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Abstract

Hamiltonian description for nonlinear waves in plasma, hydrodynamics and
magnetohydrodynamics is presented. The main attention is paid to the prob-
lem of canonical variables introducing. The connection with other approaches
of the Hamiltonian structure introducing is presented, in particular, with the
help of the Poisson brackets expressed in terms of natural variables. It is shown
that the degeneracy of the noncanonical Poisson brackets is connected for the
system of hydrodynamic type with the specific symmetry, namely, with the
relabeling transformations of the Lagrangian markers of fluid particles. All
known theorems about the vorticity conservation (the Ertel’s, Cauchy’s and
Kelvin’s theorems, the frosenness of vorticity and conservation of the topo-
logical Hopf invariant) are a sequence of this symmetry. The canonical vari-
ables are introduced into the collisionless plasma kinetics and into the Benney
equation. The problem of Hamiltonian structures is discussed for surface and
internal waves as well as for the Rossby waves. The Hamiltonian structure also
is introduced for the Davey-Stuartson equation, describing the interaction of
quasimonochromatic waves with the induced low-frequency medium motion.
At the end of this survey a general method for investigation of weak nonlin-
ear waves is considered, based on both the classical perturbation theory and
reduction of Hamiltonians.
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1 Introduction

The equations of hydrodynamics and their generalizations are among the most basic
tools for description of nonlinear waves in macroscopic physics. In studying them, an
important question is whether these equations, in the case of absence of dissipation,
have a Hamiltonian structure. This problem is primarily important in connection
with the problem of quantization. However, also in the classical case, establishing
that a given system is Hamiltonian allows one to hope (although this is not always
a simple matter) to introduce explicitly canonical variables, after which all the vari-
ants of perturbation theory are considerably simplified and standardized (cf., for
example,[1, 2, 3, 4]). In particular, this approach gives an opportunity to consider
all nonlinear processes from the general point of view without fixing their proper
peculiarities connected with a given concrete medium. The Hamiltonian approach
gives also certain advantages when approximations must be performed. Classical
example of this is a description of well-separated space or/and time scales, in partic-
ular, of high-frequency and low-frequency waves (for review, see the remarkable book
of Whitham [5]). For the Hamiltonian continuous systems, the stability problem for
stationary solutions as cnoidal waves, solitons, vortices, etc. is formulated more or
less at the same manner and it can be solved by studying the quadratic Hamiltonian
for small perturbations or by taking the Hamiltonian with combination with another
integrals (numbers of particles, momentum, etc.) as the Lyapunov functional if one
treats the nonlinear stability (cf., for instance, [6, 7, 8]).

Besides hydrodynamics, the equations of the hydrodynamic type are widely used
for description of various processes in plasma physics as well as in magnetohydrody-
namics. They combine the equation of medium motion and the Maxwell equations
for electromagnetic field. These models play also an essential role for solid state
physics and nonlinear optics.
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The problem of the Hamiltonian structure for hydrodynamic equations has a
long history. There are two traditional approaches to answer it. First, one can try,
for some system or other, to directly guess a complete set of canonical variables.
Then the problem of calculating Poisson brackets between any physical quantities is
automatically solved, and one succeeds also in writing down a variational principle.
Usually the Hamiltonian variables are expressed in terms of the natural variables
(velocity, pressure) in a by no means trivial fashion.

An alternative path is to find directly expressions for the Poisson brackets in
”natural” variables. This does not enable one to introduce a variational principle,
but for many physical problems, including the problem of quantization, it appears
to be sufficient. The equations of hydrodynamic type have the same degree of non-
linearity (quadratic in the velocities) as the energy integral. It then follows that the
expression for the Poisson bracket must be linear with respect to the variables (the
velocity, the density, etc.) that enter these equations. It is easy to show that all such
brackets are brackets of the Berezin-Kirillov-Kostant type on certain Lie groups.
This quite important fact was understood relatively recently, apparently first by
V.I.Arnold [9], [10] (see also, [11]) although Poisson brackets between velocity com-
ponents were already calculated in connection with the problem of quantization in
a paper of L.D.Landau [12]. Also devoted to these notions were some papers of
I.E.Dzyaloshinskii and G.E.Volovik [13], and S.P.Novokov. In For the equations of
magnetohydrodynamics the noncanonical Poisson brackets were calculated first by
Greene and Morrison [15] and for the Vlasov-Maxwell equations for a plasma they
were obtained by Morrison [16].

As for canonical variables, for the ideal hydrodynamics of a homogeneous in-
compressible fluid they were already found in the previous century by Clebsch (cf.,
for example, [17]). The topological meaning of these variables was clarified in the
paper of Kuznetsov and Mikhailov [18]. In 1932, H.Bateman [19], and later indepen-
dently B.I.Davydov [20], extended the result of Clebsch to a compressible barotropic
liquid. In 1952 for nonbarotropic flows of ideal liquid variables were found by
I.M.Khalatnikov [21]. Later this result was rediscovered in a set of other articles
(see, for example, [22]).

From these results one can obtain the canonical variables for an incompressible
fluid of variable density, including fluids with a free boundary, as was done by Kon-
torovich, Kravchik and Time [23]. However, the extremely important problem from
the point of view of surface waves, of the Hamiltonian description of a fluid with free
surface, was solved earlier by one of the authors of the present book (V.E.Zakharov).
The canonical variables were introduced without proof in 1966 [24], and the complete
proof was published in 1968 in [25]. In these papers only potential flows of the fluid
were considered. A partial transfer of the results to the case of nonpotential flow was
accomplished by Voronovich [26] and Goncharov [27], who also solved the problem of
the Hamiltonian description of internal waves in the ocean. A presentation of these
results can be found in the monograph of Yu.Z.Miropolskii [28] as well as a recent
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book by Goncharov and Pavlov [29], both written entirely from the point of view of
Hamiltonian formalism.

Of especial interest is the Hamiltonian formalism for the Benney equations, de-
scribing nonpotential long waves on shallow water. The system of Benney equations
is completely integrable [30],[31], and the Hamiltonian formalism for them was for-
mulated (in the language of Poisson brackets between moments of the longitudinal
velocity) in a paper of Manin and Kupershmidt [32].

Canonical variables enabling one to calculate Poisson brackets between any quan-
tities, were found for the Benney equations in [30]. This question turned out un-
expectedly to be related to the question of the Hamiltonian description of plasma,
which had attracted attention earlier. A Hamiltonian description of magnetohydro-
dynamics was achieved by the authors of the present book in 1970 [33]. Canonical
variables in a two-fluid hydrodynamic model were introduced in [34], and were used
later in various papers describing nonlinear processes in plasma (cf., for example
[35]). This did not solve the question of introducing canonical variables in the col-
lisionless kinetics of a plasma, although, after paper [31], it became clear that such
variables must exist. In the present survey we introduce such variables, using the
equivalence of the Vlasov equations to an infinite system of hydrodynamic equations.
This equivalence, which was noted by one of the authors (E.A.Kuznetsov) is estab-
lished by a Radon transform, and was essentially used in [30], where it was shown
that the Benney equations are equivalent to one variant of the Vlasov equations.

In the present survey we also give a systematic description of the result recalled
above. In addition we discuss the interesting question of Hamiltonian structure
for a two-dimensional incompressible hydrodynamics, and for the Charny-Obukhov-
Hasegawa-Mima equation describing Rossby waves. In these systems, one has not
succeeded so far in introducing suitable canonical variables, although the existence
of a Hamiltonian structure is a proven fact. Recently Piterbarg [39], generalizing the
results of the papers [38], turned out to prove that the noncanonical Poisson brackets
for such systems for arbitrary flows with closed stream lines can be reduced to the
Gardner-Zakharov-Faddeev brackets appearing at first for the integrable equations
[40] and to suggest a constructive scheme of canonical basis finding. Finally we
consider some general properties of Hamiltonian systems with a continuous number
of degrees of freedom.

The basis of this survey was the paper of the authors [1], published in 1986 in
English in a sufficiently rare journal and therefore became unknown for a wide audi-
ence both Russian and in abroad. Against [1] the text of this survey is revised and
broaden significantly. First of all, both revision and addition were subject for the
problems of the noncanonical Poisson brackets and their degeneracy. For system of
the hydrodynamic type this degeneracy is connected with a hidden symmetry of the
equations, being in fact the gauge one. This symmetry has the Lagrangian origin; it
relates to the group of transformations relabeling the Lagrangian variables marked
each fluid particle. Evidently no changes in markers must influence on the system

4



dynamics. First this fact was understood sufficiently completely by R.Salmon [41] in
1982 although Eckart in 1938 and then in 1960 [44] and later Newcomb understood
the role of this symmetry. In particular, all known theorems about the vorticity con-
servation, i.e., the Ertel theorem about the existence of the Lagrangian (material)
invariants [42] (see also [53], pp 31-32), the Cauchy theorem of frozenness of vortic-
ity into a fluid [17] and the Kelvin theorem about the conservation of the velocity
circulation (see, for instance, [53]), as well as the conservation of the topological
Hopf invariant [55, 56] characterized the flow knottiness, are a consequence of this
symmetry. This symmetry is connected also with introducing the canonical Clebsch
variables and their gauge symmetry.

One should note that introducing canonical variables of the Clebsch kind into the
systems of the hydrodynamic type allows one to find expressions for all noncanon-
ical Poisson brackets known up to now, starting from the canonical one. This fact
first was demonstrated by the authors of the given survey [48, 1] for the equations
of ideal hydrodynamics and for the kinetic Vlasov-Maxwell equations for plasma.
However, passing to the opposite direction, i.e., finding canonical brackets from the
noncanonical one, in the general situation entails some difficulties, connected with
the noncanonical brackets degeneracy.

In this survey we consider in more details all these questions for the hydrodynamic
equations. Here we don’t discuss the role of this symmetry for another models, except
the MHD equations (about this subject see the recent paper [49]). Now this question
for systems of the hydrodynamic type is far well studied and requires additional
investigations. In our opinion, it has a principle meaning for understanding many
nonlinear phenomena which take place in fluids and plasma. First of all these are the
processes of reconnection of vortex lines for fluids or magnetic field lines in plasma,
namely, the processes which change the system topology.

2 General Remarks

We recall some elementary facts. The most naive definition of a finite-dimensional
Hamiltonian system reads as follows. One considers a system of an even number
of differential equations for the time-dependent functions qk(t), pk(t)(k = 1, ..., N),
having the form

·
qk=

∂H

∂pk

,
.
pk= −∂H

∂qk

. (2.1)

Here H(p1, ..., pN , q1, ..., qN), which is a given function of the variables, is the Hamil-
tonian.

The definition presented here is far from being always satisfactory, since it as-
sumes implicitly that the domain of variation of the pi and qi (the phase space) is a
domain in the real vector space R2N . However, already for the case of the mathemat-
ical pendulum, where the generalized coordinate is an angle, one must identify its
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values that differ by 2π. Thus the phase space of the pendulum is a cylinder, which
is extremely significant, since any functions defined uniquely on the cylinder must
be periodic functions of the angular coordinate. The situation becomes even more
complicated when we consider the spherical pendulum or the motion of a rigid body
with one point fixed. All of these examples deal with the next class of Hamiltonian
systems in degree of non-triviality, where one can, with a sufficient degree of def-
initeness, distinguish two groups of variables-generalized coordinates q1, ..., qN and
generalized momenta p1, ..., pN . The separation is based on the fact that the general-
ized coordinates give a point on an arbitrary N -dimensional manifold (configuration
space) M , while the momenta can have arbitrary values in the vector space of mo-
menta RN . In this case the phase space of the system, G = T ∗(M) is the tangent
bundle of the manifold M . Hamiltonian systems of this type preserve the basic prop-
erties of ”naive” Hamiltonian systems. In particular, the variational principle in the
Hamiltonian form is valid for them and one can go over to a Lagrangian description.

Only systems of this type are usually described in the standard textbooks of
theoretical physics.

It is important, however, to consider Hamiltonian systems of more general form,
in which it is impossible to make a unique separation of variables into coordinates
and momenta. Such systems are conveniently described in terms of generalized co-
ordinates, that are generally speaking not canonical. Let G, the phase space of the
system, be a manifold covered by some system of maps. We assume that on the man-
ifold G there is given a symplectic structure - a nondegenerate closed two-form Ω.
This means that at each point a twice covariant anti-symmetric tensor Ωij = −Ωji

is defined. Suppose that xi are the local coordinates of some point. The closure
condition implies that Ωij obeys the system of equations

∂Ωij

∂xk

+
∂Ωjk

∂xi

+
∂Ωki

∂xj

= 0 (2.2)

with det||Ωij|| 6= 0.
A system of differential equations defined on G is said to be Hamiltonian if there

exists a function H on G, so that, in the neighborhood of each point identified by xi

one has

Ωij
.
xj=

∂H

∂xi

. (2.3)

It is easy to see that under changes of coordinates xi = xi(x̃1, ..., x̃N), for which
Jacobian ∂(x1, ..., xN)/∂(x̃1, ..., x̃N) 6= 0, then the equation (2.3) remains invariant.
In this case the matrix Ω transforms as follows,

Ω̃lm =
∂xi

∂x̃l

Ωij
∂xj

∂x̃m

.

A manifold on which one can assign symplectic structure is said to be symplectic.
It necessarily has even dimension (otherwise det Ωij = 0).
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Within each simply connected region Eq.(2.2) can be integrated to read:

Ωij =
∂Ai

∂xj

− ∂Aj

∂xi

. (2.4)

where Ai(x) are the ”potentials” of the form Ωij. If the solutions of the system (2.3)
do not extend beyond the limits of this region, the variational principle δS = 0 is
valid, where

S =
∫

(Ai
.
xi +H) dt. (2.5)

It has been noted that the variational principle (2.5) exists globally only if the
form Ωij is exact, i.e., if the relation (2.4) can be extended over the whole manifold
G. Generally speaking, Ai are multivalued functions on G, that acquire a nonzero
addition in going around any cycle not homologous to zero. Locally, in each simply
connected region one can, by a suitable change of variables, bring the system to
canonical coordinates, i.e., to the form (2.1) (Darboux’s theorem). However, globally
(over all G) doing this is generally not possible, even if the form (2.4) is exact. Due
to the assumption of the nondegeneracy of the form Ωij, Eq. (2.3) can be written in
the form

.
xi= Rij

∂H

∂xj

. (2.6)

Here Rij = −Rji is the matrix reciprocal to Ωij, such as R−1 = Ω. It is then
easily verified that the relations (2.2) are equivalent to the relations

Rim
∂

∂xm

Rjk + Rkm
∂

∂xm

Rij + Rjm
∂

∂xm

Rik = 0. (2.7)

Next, by means of the matrix R one defines the Poisson bracket between any
functions A and B given on G:

{A,B} =
∑

Rij
∂A

∂xi

∂B

∂xj

. (2.8)

From the antisymmetry of Rij it follows that

{A,B} = −{B,A} ,

while the relations (2.7) guarantee that the Jacobi identity

{{A,B} , C}+ {{B,C} , A}+ {{C, A} , B} = 0 (2.9)

is satisfied. Because of the nondegeneracy of the matrix Ωij, in each coordinate
system the matrix Rij is also nondegenerate. The matrix R is called the symplectic
operator, and it plays the same role as the metric tensor gij in Eucledian geometry.
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The condition (2.7) is analogous to the vanishing of the curvature tensor for Eucledian
space, and, respectively, the canonical form

Ω =
(

0 I
−I 0

)

has the same meaning as
g = I

in Eucledian space.
The next step for generalizing the Hamiltonian system is to drop the requirement

of nonsingularity of R. This variant of the Hamiltonian mechanics is called by the
Poisson mechanics. If det||Rik|| = 0, then a return to the form (2.3) is impossible.
Suppose that ξα

i (α = 1, ..., k) is based in the co-kernel of the operator Rij (i.e.,
ξiRij = 0). Then, from (2.6), it follows the relations

ξα
i

.
xi= 0, α = 1, ..., k, (2.10)

follow. In a one-connected domain in which rank of the matrix R is constant, due
to the Frobenious theorem, Eqs.(2.10) can be integrated:

fα(x1, ..., xn) = const , α = 1, ..., k .

In their turn, these relations are connected with vectors ξα
i by the evident formulas:

ξα
i =

∂fα

∂xi

.

The constants fα are called Casimirs. Moreover, the Frobenious theorem and the
relations (2.7) guarantee that all these k invariants are functionally independent.
They are evidently integrals of motion for our Hamiltonian system. These integrals
separate G into manifolds invariant under the system (2.6) (symplectic leaves). On
each of them one can introduce the usual Hamiltonian mechanics. From our remarks
it is clear that the possibility of introducing Poisson brackets implies the system
under consideration to be Hamiltonian in the weakest sense.

Of special interest is the case where the metric elements Rij are linearly dependent
on the coordinates as follows:

Rij = eij,mxm. (2.11)

From condition (2.7) it now follows that the eij,m are subject to the relations

eik,mejm,l + eji,mekm,l + ekj,meim,l = 0

i.e., they are the structure constants of some Lie algebra L. Calculating the bracket
between quantities xi, xj, it can be checked that

{xi, xj} = Rij = eij,mxm. (2.12)
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Thus, the space G itself is now a Lie algebra L. The constants fα in this case are
just the Casimirs of this Lie algebra, and they commute with any elements from the
algebra,

{fα, .} = 0.

The matrix Rij is in general degenerate. However, the relations (2.10) are always
integrable. Consider the algebra L∗, dual to L, and the corresponding Lie group l∗.
Here the algebra L forms the co-adjoint representation of the group l∗. Relations
(2.10) are invariant under the action of the group l∗, and so conditions (2.12) hold,
and define the orbits of the action of the group l∗ in L. On these orbits (cf. Kirillov
[36], Kostant [37]) there exists a fully valid Hamiltonian mechanics.

If the Hamiltonian is polynomial in its variables, then the equations are also
polynomials in the canonical coordinates, and they have a nonlinearity that is one
degree lower. If the degree of nonlinearity of the investigated system coincides with
the degree of nonlinearity of the Hamiltonian, then the matrix is linear in the coordi-
nates, and the symplectic manifold G is the orbit of some Lie group in its co-adjoint
representation. This currently happens for equations of hydrodynamic type.

Another interesting case is the situation when the Poisson structure R depends
on coordinates xi quadratically. In this case it can be considered as the classical R-
matrix which plays the important role in theory of Hamiltonian systems integrable
by the inverse scatterring transform. This theory, however, is far from a scope of
this survey and further we shall not touch this question.

In the next sections on the concrete examples we show how both canonical vari-
ables are introduced and matrix elements are calculated.

3 Hamiltonian Formalism in Continuous Media

The introduction of a Hamiltonian structure for conservative nonlinear media is
essentially a generalization of the Hamiltonian formalism for systems with a finite
number of degrees of freedom to systems with a continuum number of degrees of
freedom. We shall basically understand this to give a description of the dynamics of
waves evolving in a continuous medium by means of canonical variables. There are
no general recipes for the introduction of canonical variables in continuous media. To
solve this problem it is sometimes useful to make use of a Lagrangian with constraints,
which one takes in the form of some equations of motion. This method, which
apparently arose in the work of B.I.Davydov [20], is justified when the expression
for the Lagrangian without the constraints comes directly from mechanics or field
theory. Such procedure, in particular, apply to systems of hydrodynamic type that
will be considered in this survey, and widely used for describing nonlinear waves in
plasma, in hydrodynamics and magnetohydrodynamics. For this purpose, it will be
required to determine We shall find the canonical variables for all of these systems.
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Suppose that the medium is described by a pair of canonical variables - the
generalized coordinate q(r, t) and the generalized momentum p(r, t), whose evolution
is given by the Hamiltonian equations:

∂p

∂t
= −δH

δq
,

∂q

∂t
=

δH

δp
. (3.1)

Here the Hamiltonian is some functional of p and q. Formally it can be written
as a series in powers of the canonical variables:

H =
∞∑

n=0

n∑

k=0

∫
Gk

n(r1, ..., rk, rk+1, ..., rn)p(r1)...p(rk)q(rk+1)...q(rn)dr1...drn. (3.2)

This expansion, in the absence of external forces, begins with quadratic terms in
p and q. For spatially homogeneous media the structure functions Gk

n are functions
of the differences (ri − rj). In particular, for such media the quadratic term in the
expansion H0 has the form:

H0 =
1

2

∫
[A(r− r′)p(r)p(r′) + 2B(r− r′)p(r)q(r′)+C(r− r′)q(r)q(r′)]drdr′ (3.3)

whose diagonalization solves the problem of stability of a homogeneous medium
under small perturbations.

To solve it we first carry out a Fourier transformation in the coordinates

p(r) =
1

(2π)3/2

∫
pke

ikrdk, pk = p∗−k,

q(r) =
1

(2π)3/2

∫
qke

ikrdk, qk = q∗−k,

As a result, equation (3.3) is rewritten in the form

H0 =
1

2

∫
[Akpkp

∗
k + 2Bkpkq

∗
k + Ckqkq

∗
k]dk.

The Fourier transforms of the structural functions that enter here have the following
properties:

Ak = A∗
k = A−k, Ck = C∗

k = C−k,

Bk = B1k + iB2k = B1−k − iB2−k.

In the k-representation the Eqs.(3.1) then take the form

∂pk

∂t
= −δH

δq∗k
,

∂qk

∂t
=

δH

δp∗k
.

10



The equations for small perturbations are obtained from this by varying the Hamilto-
nian H0. Analysis of these equations shows that waves can propagate in the medium
with frequencies

ω1,2 = −B2k ±
√

AkCk −B2
1k.

The medium will be stable with respect to small perturbations if

AkCk −B2
1k > 0 (3.4)

and, respectively, unstable in the opposite case. The latter case, for instance, can be
realized in a cold plasma with a monochromatic electron beam when plasma electrons
and beam electrons can be considered as two independent fluids.

In the following we shall assume that the stability condition (3.4) is satisfied. For
media that are invariant under reflection (B(r) = B(−r)), one obtains

B2k = 0 and ω2
k = AkCk −B2

1k.

We further carry out a canonical transformation from the variables pk and qk to
normal variables ak and a∗k:

pk = Ukak + U∗
ka∗−k, (Uk = U−k), (3.5)

qk = Vkak + V ∗
k a∗−k, (Vk = V−k).

in which the quadratic Hamiltonian is

H0 =
∫

ωka
∗
kakdk, (3.6)

and the equations of motion have the form:

∂ak

∂t
= −i

δH

δa∗k
. (3.7)

Here ωk denotes one of the functions ω1,2.
Substituting the transforms (3.5) into (3.3), from a comparison with (3.6) we get a

system of equations for determining Uk and Vk. By requiring that this transformation
is canonical, we get

UkV
∗
k − U∗

kVk = −i ,

and find from this system

Uk = i
(B1k − iω0k)√

2Akω0k

exp(iϕk) ,

Vk = −i

√
Ak

2ω0k

exp(iϕk) .
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In the above expressions ωok is the quantity sign[Ak](AkCk − B2
1k)

1/2 , and ϕk is an
arbitrary phase factor, which we shall set equal to zero from now on (this corresponds
to a simple redefinition of ak : ak → ake

iϕk).
Let us now explicitly consider the complete frequency

ωk = −B2k + sign[Ak](AkCk −D2
1k)

1/2

that is the dispersion law for the waves. It is essential that the sign of the frequency
coincides with the sign of the wave energy in the nonlinear medium. 3 By this reason
all waves can be divided in two big classes: waves with positive energy and waves
with negative energy. All well-known waves (gravity and capillary waves on the fluid
surface, acoustic and electromagnetic waves, and so on) belong to the first class.
The waves with a negative energy typically appear in media with some current (it
may be electron or ion beams in plasma, or flow of one fluid with respect to another,
etc.) and in this case the origin of a negative frequency is connected with the Doppler
effect. One should say that there is no principle difference in the nonlinear interaction
between waves within their respective classes. This arises for the interaction between
waves with positive and negative energies.

In order to classify the nonlinear interaction between waves, let us consider the
next terms in the expansion in powers of a and a∗, which can be obtained after
substitution of (3.5) into (3.2). In particular, the cubic term H1 has the form

H1 =
∫

(Vkk1k2a
∗
kak1ak2 + c.c.)δk−k1−k2dkdk1dk2 (3.8)

+
1

3

∫
(Ukk1k2a

∗
ka
∗
k2

a∗k2
+ c.c.)δk+k1+k2dkdk1dk2

where the matrix elements of U and V have the following symmetry properties:

Ukk1k2 = Ukk2k1 = Uk2k1k, Vkk1k2 = Vkk2k1 .

Among the fourth-order terms, we shall be interested in the term of the form

H2 =
1

2

∫
Tk1k2k3k4a

∗
k1

a∗k2
ak3ak4δk1+k2−k3−k3

∏
i
dki.

Each term in the expansion of H in powers of a and a∗ has a simple physical
meaning. The equation of motion in the form (3.7) is the limit of the corresponding
quantum equations for the Bose operators in the case of a classical wave field, where
the variables a∗ and a appear as analogs of the creation and annihilation operators.
Thus the cubic term in the expansion of the Hamiltonian describes three-wave pro-
cesses (the first term in H1 is responsible for processes of decay of one wave into

3Here we assume that the nonlinear interaction is weak so that the energy sign of the nonlinear
medium coincides with the sign of its quadratic Hamiltonian.
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three waves, the second corresponds to simultaneous creation of three waves), the
next term describes four-wave processes, etc.

It is necessary to say that a calculation of matrix elements in this scheme assumes
a pure algebraic procedure that consists in a substitution of the transformation (3.5)
into the corresponding Hamiltonian, a forthcoming simplification and a symmetriza-
tion of the final result.

For a medium described by several pairs of canonical variables and when H0

is diagonalized, several wave branches can appear, with dispersion laws ωi(k) and
amplitudes ai(k). In this case a summation over all types of waves in each term of
the expansion is needed.

4 Canonical Variables in Hydrodynamics

As a first example we consider the equations of potential flow of an ideal compressible
barotropic fluid, in which the pressure p is a single-valued function of the density ρ.
These equations can be written in the form:

∂ρ

∂t
+ divρ∇ϕ = 0, (4.1)

∂ϕ

∂t
+

(∇ϕ)2

2
+ w(ρ) = 0. (4.2)

Here ϕ is the velocity potential, ω(ρ) = ∂ε/∂ρ is the enthalpy, where ε(ρ) denotes
the internal energy density. These equations conserve the energy

H =
∫ [

ρ (∇ϕ)2

2
+ ε (ρ)

]
dr. (4.3)

It can be checked that the equation set (4.1), (4.2) can be represented in the form of
the Hamilton equations:

∂ϕ

∂t
=

δH

δρ
,

∂ρ

∂t
= −δH

δϕ
.

Thus the density ρ is a generalized coordinate, and ϕ is the generalized momentum.
This result can also be obtained from a Lagrangian approach. In this case one

makes use of the well-known expression for the Lagrangian of a mechanical system,
generalized to the continuous case, and supplement it by the constraint:

∂ρ

∂t
+ divρv =0.

Then the action is

S =
∫

Ldt =
∫ [

ρv2

2
− ε(ρ) + ϕ

(
∂ρ

∂t
+ divρv

)]
drdt.
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Its variation with respect to the variable v leads to the condition for the potential
flow, v = ∇ϕ, and variations with respect to the variables ρ and ϕ lead to Eqs.
(4.1), (4.2). Here the transition to the Hamiltonian is accomplished by the standard
formula

H =
∫

ϕ
∂ρ

∂t
dr− L

and leads us to (4.3).
We give the expression for the coefficients of the Hamiltonian expansion.
The diagonalization of

H0 =
∫ [

1

2
ρ0 (∇ϕ)2 + c2

s

δρ2

2ρ0

]
dr

can be made by the transformation

ϕk = − i

k

(
ωk

2ρ0

)1/2 (
ak − a∗−k

)
, (4.4)

δρk = k
(

ρ0

2ωk

)1/2 (
ak + a∗−k

)
.

Here ωk = kcs refers to the eigen frequency, δρ = ρ−ρ0 is the deviation of the density
from the equilibrium ρ0, cs = (∂p/∂ρ0)

1/2 is the sound velocity. Substitution of this
transformation in the next term of the expansion H1,

H1 =
∫ [

1

2
δρ (∇ϕ)2 + c2

sg
δρ3

2ρ2
0

]
dr

gives the following expression for Ukk1k2 and Vkk1k2 :

Ukk1k2 = Vkk1k2 (4.5)

=
1

16 (π3ρ0)
1/2
{3gc2

s

kk1k2

(ωkωk1ωk2)
1/2

+

(
ωkωk1

ωk2

)1/2

k1
(kk1)

kk1

+

(
ωkωk24

ωk1

)1/2

k1
(kk2)

kk2

+
(

ωk2ωk1

ωk

)1/2

k
(k2k1)

k2k1

}.

The equations describing nonlinear sound waves in media with dispersion belong
to the same type of system as (4.1), (4.2). These equations can be derived when
considering the internal energy of the system εin as a functional of the density. This
functional can be represented as a power series in ∇ρ:

Ein=
∫ {

ε (ρ) +
ν

2
(∇ρ)2 + ...

}
dr. (4.6)
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Classical hydrodynamics corresponds to keeping only the first term in the above
series. If we now include the second term, we get the Boussinesq system:

∂ρ

∂t
+ divρ∇ϕ = 0,

∂ϕ

∂t
+

1

2
(∇ϕ)2 = −δEin

δρ
= −w (ρ)− ν 4 ρ.

The Hamiltonian in this case coincides with the total energy of the system, i.e., with
a sum of kinetic energy and internal energy given by (4.6), for while ρ and ϕ remain
the canonical conjugated variables.

Introduction of canonical variables is possible also when we include vortex motion
in an ideal fluid [17, 19, 20]. To this aim we must start from the full Euler equations
of hydrodynamics:

∂ρ

∂t
+ divρv = 0, (4.7)

∂v

∂t
+ (v∇)v =− ∇p (ρ)

ρ
= −∇w (ρ) . (4.8)

We know that, for the Euler equations in accordance with the Kelvin theorem, the
circulation of the fluid velocity around any closed contour moving together with the
fluid is conserved. In other words, in such a system there is a certain scalar function
µ(r, t) which is convected by the fluid and described by the following equation:

dµ

dt
=

(
∂

∂t
+ v∇

)
µ = 0. (4.9)

Therefore, in formulating the variational principle we should include this equation
as a constraint which implies to set

L =
∫ [

ρv2

2
− ε (ρ) + ϕ

(
∂ρ

∂t
+ divρv

)
− λ

(
∂µ

∂t
+ v∇µ

)]
dr. (4.10)

The variation of L with respect to the variables v and µ leads to the following
equations:

v =
λ

ρ
∇µ +∇ϕ, (4.11)

∂ϕ

∂t
+ (v∇ϕ)− v2

2
+ w (ρ) = 0, (4.12)

∂λ

∂t
+ divλv =0. (4.13)

Here the first equation is the well-known change to the Clebsch variables λ and µ; the
second one represents the generalization of the Bernoulli equation to the nonpotential
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flows and the last one governs the dynamics of a new variable λ. The choice of λ
and µ for a given value of v is not unique.

Let us consider two sets of potentials λ, µ, ϕ, giving the same value for the velocity
v with the help of Eq.(4.11). Multiplying (4.11) by the differential dr (for fixed time
t), we get a relation between the new and old variables:

dϕ +
λ

ρ
dµ = dϕ′ +

λ′

ρ
dµ′

or

df ≡ d (ϕ− ϕ′) = −λ

ρ
dµ− λ′

ρ
dµ′ (4.14)

The last relation shows that ϕ′ − ϕ is the generating function f of a gauge trans-
formation, depending on µ and µ′. The old and new canonical coordinates are then
expressed in terms of the generating function by means of the formulas [21]

λ = −ρ
∂f

∂µ
, λ′ = ρ

∂f

∂µ′
(4.15)

determining the nonuniqueness in the choice of Clebsch variables.
Substituting the velocity v expressed in terms of the variables λ, µ and ϕ directly

into the Euler equation (4.8), we verify that

λ

ρ
∇

(
∂µ

∂t
+ (v∇)µ

)
+∇µ

(
∂

∂t

λ

ρ
+ (v∇)

λ

ρ

)
+∇

(
∂ϕ

∂t
+ (v∇) ϕ− v2

2
+ w (ρ)

)
= 0.

Thus this equation is satisfied if Eq-s. (4.12), (4.13) are also imposed. If it is so
the system of equations of hydrodynamics can be said to be equivalent to the system
(4.7), (4.9), (4.12), (4.13). This is based on the uniqueness of the solution of the
Cauchy problem for the original system and the one obtained (that is, rigorously
speaking, an assumption). In doing this, we must in addition, by means of the
velocity v given at the initial time, construct some set of functions λ0, µ0 and ϕ0,
appearing as initial conditions for the system (4.9), (4.12), (4.13).

Now changing to a Hamiltonian description, we get:

∂ρ

∂t
=

δH

δϕ
,

∂ϕ

∂t
= −δH

δρ
; (4.16)

∂λ

∂t
=

δH

δµ
,

∂µ

∂t
= −δH

δλ
,

where the Hamiltonian

H =
∫ [

ρv2

2
+ ε (ρ)

]
dr
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coincides with the total energy of the system. For potential flows (λ = µ = 0) we
again arrive at a pair of canonical variables (ρ, ϕ).

Canonical variables for the equations of relativistic hydrodynamics,

∂ρ

∂t
+ div(ρv) =0,

(
∂

∂t
+ (v∇)

)
p+m∇w (ρ) = 0,

p = mv
(
1− v2/c2

)−1/2
,

are introduced in analogy to (4.11). In this case,

p

m
=

λ

ρ
∇µ +∇ϕ.

Just as in the preceding example, the variables (λ, µ) and (ρ, ϕ) form pairs of canon-
ically conjugate quantities, subjected to Eqs (4.12), with the Hamiltonian

H =
∫ [

ρ

m

(
m2c + p2c2

)1/2
+ ε (ρ)

]
dr.

A natural generalization of the Clebsch formulation (4.8) is the introduction of
canonical variables for nonbarotropic flows [21], when ε depends on the density as well
as on the entropy S. For this the equations of motion (4.9), (4.11) are supplemented
by the equation for the entropy advected by the fluid,

(
∂

∂t
+ (v∇)

)
S = 0,

and the thermodynamic relation

dε = ρTdS + wdρ,

with T as the temperature. In this case the transition to the new variables is accom-
plished by the formula

v =∇ϕ +
λ

ρ
∇µ +

β

ρ
∇S. (4.17)

For such flows (ϕ, ρ, λ, µ) and (S, β) are pairs of canonically conjugate quantities:

∂ρ

∂t
=

δH

δϕ
= −divρv,

∂ϕ

∂t
= −δH

δρ
=

v2

2
− v∇ϕ− w,
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∂λ

∂t
=

δH

δµ
= −divλv,

∂µ

∂t
= −δH

δλ
= −v∇µ,

∂β

∂t
=

δH

δS
= −divβv+ρT,

∂S

∂t
= −δH

δβ
,

where H =
∫
[ρ(v2/2) + ε(ρ, s)]dr. The equivalence of these equations to the equa-

tions of hydrodynamics is verified by direct substitution of the velocity in the Euler
equation (4.8). Thus, in comparison with the barotropic case the number of canonical
variables increases by two.

Now let us raise the natural question: What is the minimal number of the canon-
ical conjugated pairs for describing any flow? As we saw above, introducing new
canonical variables in the framework of the Lagrangian approach was connected
with the addition of new constraints into the Lagrangian. For example, for the La-
grangian (4.10) they were the continuity equation for the density and the equation
for the Lagrangian (material) invariant µ advected by the fluid. In the nonbarotropic
case the new Lagrangian invariant, i.e, the entropy S, was added.

To describe the fluid in terms of the Lagrangian (material) variables it is enough
to give three values (a1, a2, a3) = a which, in the simplest case, coincide with the
initial positions of each fluid particles, so that the coordinate of the particle at time
t will be equal to

r = r(a, t). (4.18)

Hence it becomes clear that originally there are three independent Lagrangian in-
variants,

a = a(r,t),

that are the inverse map to (4.18). All other Lagrangian invariants are functions of
a. If now we assign the equations for a

da

dt
≡ ∂a

∂t
+ (v∇)a = 0

as constraints 4 in the Lagrangian for the fluid we immediately come to three new
pairs of the canonical variables {λl, al} (l = 1, 2, 3) with the velocity in the form,

v = ul∇al. (4.19)

Here ul = λl/ρ and the density ρ is expressed through a my means of

ρ = 1/J

4These constraints are called often as the Lin’s constraints [51]
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with J = det||Ĵij|| as the Jacobian of the mapping (4.18), and Ĵij = ∂xi/∂aj being
the Jacoby matrix (for more details, see two next sections). The vector u in this
formula is expressed in terms of the velocity components vi by

u = Ĵ tv

where subscript t means transpose.
The representation (4.19) is the most general one. In particular, all the changes

of variables presented above follow from this formula. It can be simplified although
remaining general.

Let us consider reversible smooth changes of variables

a = a(ã).

Under these changes the representation (4.19) remains invariant,

v = ũl∇ãl,

but the vector u transforms as

ũl = uk
∂ak

∂ãl

.

If we now require that one of the component, say u3, is equal to 1, the representation
(4.19) becomes (compare with [50])

v = ∇φ +
λ1

ρ
∇µ1 +

λ2

ρ
∇µ2. (4.20)

If now in this equation we put for µ2 the entropy S, then we come back to the
transformation (4.17). Note that such a reduction is possible if the surface family
of the constant entropy S(r, t) = const are homotopic to the one of the constant
surfaces, related to, e.g., a1(r, t) = const. Hence, in particular, it follows that in the
barotropic case it is enough to take two pairs of the Clebsch variables in order to
describe any fluid flow. One pair of the Clebsch variables, as we will see further,
describes a partial type of flows. Nevertheless, locally any flow can be paratmerized
by one pair of the Clebsch variables [17].

5 Noncanonical Poisson Brackets

Now let us consider how one introduces a Hamiltonian structure into hydrodynamics
in terms of the natural physical variables. To do so, it is sufficient to construct a
Poisson bracket that satisfies all the necessary requirements. The simplest way of
constructing such brackets is to convert the Poisson bracket expressed in terms of
canonical variables to a bracket in terms of the natural variables. Note that in this
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case the arisen symplectic operator occurs locally in those variables. As an example
we carry out the conversion of the formula for barotropic flows of an ideal fluid. The
calculations for other models can be done in exactly the same way.

According to (4.16), the Poisson bracket is given by the expression:

{F, G} =
∫ {[

δF

δρ

δG

δϕ
− δF

δϕ

δG

δρ

]
+

[
δF

δλ

δG

δµ
− δF

δµ

δG

δλ

]}
dr. (5.1)

Here the velocity is expressed in terms of λ, µ and ρ, ϕ by the formula

v =∇ϕ +
λ

ρ
∇µ,

by means of which one can calculate the variational derivatives of F with respect to
ρ, ϕ, λ and µ:

δF

δρ

∣∣∣∣∣λ =
δF

δρ

∣∣∣∣∣
v

− λ∇µ

ρ

δF

δv
,

δF

δϕ
= −div

δF

δv
, (5.2)

δF

δλ
=
∇µ

ρ

δF

δv
,

δF

δµ
= −div

(
λ

ρ

δF

δv

)
.

In these formulas the variational derivatives on the left of the equality signs are taken
with fixed λ, µ, ρ, ϕ, and those on the right for constant ρ and v. Substitution of
these relations in (5.1) leads us to the bracket [15]

{F, G} =
∫ {(

∇δF

δρ
,
δG

δv

)
−

(
∇δG

δρ
,
δF

δv

)}
dr (5.3)

+
∫ (

curlv

ρ
,

[
δF

δv
× δG

δv

])
dr

the Jacobi identity (2.9) being satisfied automatically.
In terms of this bracket, the continuity and Euler equations have the form

∂ρ

∂t
= −divρv = {ρ,H} ,

∂v

∂t
= −(v,∇)v−∇w (ρ) = {v,H} ,

where H =
∫
[ρv2/2 + ε(ρ)]dr.

The bracket (5.3) has a more obvious meaning if we go over to the new variable
p = ρv, the momentum density. In these variables this bracket is changed to the
Berezin-Kirillov-Kostant (BKK) bracket [14]:

{F,G} =
∫

ρ

{(
∇δF

δρ
,
δG

δp

)
−

(
∇δG

δρ
,
δF

δp

)}
dr (5.4)
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+
∫ (

p,

[(
δG

δp
∇

)
δF

δp
−

(
δF

δp
∇

)
δG

δp

])
dr.

Using (5.4) to calculate brackets between components of p and ρ, we find that

{pi (r) , pj (r′)} = (pj (r′)∇′
i − pi (r)∇j) δ (r− r′) , (5.5)

{pi (r) , ρ (r′)} = ρ∇iδ (r− r′) .

In accordance with (2.12), these relations give a Lie algebra, which coincides with
the algebra of vector fields [60, 14] in this case.

The brackets (5.4), (5.5) can also be obtained in other ways. The simplest method
is to regard the Poisson bracket as the classical limit of the corresponding quantum
commutators, which were first calculated for hydrodynamics by L.D.Landau [12].
Another method for calculating the Poisson brackets for hydrodynamic models, pro-
posed by G.E.Volovik and I.E.Dzyaloshinskii [13], is based on the fact that p and ρ
are the densities of the generators of translations and gauge transformations.

In a sake of completeness we give the expressions for the Poisson brackets for the
hydrodynamic equations of ideal fluids for arbitrary dependence of the pressure on
both the density and the entropy [15]

{F, G} =
∫ {(

∇δF

δρ
,
δG

δv

)
−

(
∇δG

δρ
,
δF

δv

)}
dr (5.6)

+
∫ (

curlv

ρ
,

[
δF

δv
× δG

δv

])
dr +

∫ (∇S

ρ
,

[
δF

δv

δG

δS
− δG

δv

δF

δS

])
dr.

We want to repeat once more that the introduction of the Poisson brackets to a
system means that such systems possess the Hamiltonian structure in the weakest
sense. For example, for the above equations of ideal hydrodynamics it reflects in
the fact that the brackets expressed in terms of natural variables are degenerate, i.e,
there exist annulators of these Poisson brackets (Casimirs) which, as we will see in
the next sections, are connected with a specific gauge symmetry of the hydrodynamic
equations, providing, in particular, the conservation of the fluid velocity circulation.
Besides, it means that a direct conversion, as, i.e., passing from (5.3) or to (5.6) to
the canonical basis is impossible in general. For this case at first we need to resolve
all our constraints (Casimirs). A typical example just consists in introducing Clebsch
variables. This is all the more interesting as, so far, we have not explicitly known
how these Casimirs look like.

Of particular interest is the introduction of a Hamiltonian structure for the in-
compressible fluid. In this case ρ is no longer an independent variable, and can be
eliminated by using the relation divv = 0. Thus in the limit of the incompressible
fluid there is only one pair of canonical variables λ and µ, and the Poisson bracket
in this case takes the form

{F, G} =
∫ [

δF

δλ

δG

δµ
− δF

δµ

δG

δλ

]
dr.
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By means of relations analogous to (5.2), one can derive

δF

δλ
=

(∇µ

ρ
,
δF

δv
−∇ 1

∆
div

δF

δv

)
,

δF

δµ
= −div

λ

ρ

(
δF

δv
−∇ 1

∆
div

δF

δv

)
.

As a result, we arrive at the equation

{F,G} =
∫ (

curl v,

[(
δF

δv
−∇ 1

∆
div

δF

δv

)
×

(
δG

δv
−∇ 1

∆
div

δG

δv

)])
dr. (5.7)

(Here we put ρ = 1.) This expression shows that the manifold G coincides with the
algebra of vector fields A(r) for which divA = 0. This bracket is expressed in a more
compact form using Ω =curlv [18], to read

{F, G} =
∫ (

Ω

[
curl

δF

δΩ
× curl

δG

δΩ

])
. (5.8)

As a result, the Euler equation for Ω,

∂Ω

∂t
= curl [v ×Ω] (5.9)

becomes the Hamiltonian one [9, 18]:

∂Ω

∂t
= {Ω,H},

where

H =
∫ v2

2
dr.

The bracket (5.8) also gives a Hamiltonian structure for two-dimensional hydro-
dynamics. In this case Ω has a single component, which is conveniently expressed in
terms of the stream function ψ:

Ω = −∆ψ

(
vx =

∂ψ

∂y
, vy = −∂ψ

∂x

)
.

In the two-dimensional case the equation of motion (5.9) and the Poisson bracket
(5.8) have the form:

∂Ω

∂t
= {Ω, H} = −∂Ω

∂x

∂ψ

∂y
+

∂Ω

∂y

∂ψ

∂x
≡ −∂ (Ω, ψ)

∂ (x, y)
,
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{F, G} =
∫

Ω
∂ (δF/δΩ, δG/δΩ)

∂ (x, y)
dxdy, (5.10)

H =
1

2

∫
(∇ψ)2 dxdy.

A Hamiltonian structure is introduced analogously into the Rossby equation,
which differs from (5.8) in having the additional term β(∂ψ/∂x) entering [1]:

∂

∂t
∆ψ + β

∂ψ

∂x
= −∂ (∆ψ, ψ)

∂ (x, y)
. (5.11)

It is then easy to see that the change Ω → Ω − βy reduces this equation to (5.10).
Thus, the Poisson bracket for (5.11) is given analogously by

{F,G} =
∫

(Ω + βy)
∂ (δF/δΩ, δG/δΩ)

∂ (x, y)
dxdy, (5.12)

while the Hamiltonian H is still defined by the earlier expression

H =
1

2

∫
(∇ψ)2 dxdy.

To the said above one should add that the Poisson brackets (5.10) and (5.12)
for flows with closed stream lines can be reduced to the Gardner-Zakharov-Faddeev
brackets used in the theory of integrable equations [40]. Details of such consideration
can be found in the original papers [38, 39].

Thus, introducing noncanonical Poisson brackets on the base of canonical ones
represents the most simple way of their finding. Moreover the Hamiltonian structure
given by means of these brackets is the weakest Hamiltonian formulation of the
equations. In this formulation, in particular, it is impossible to write explicitly the
variational principle. From another side, as it will be shown later, the representation
of the hydrodynamic type equations by means of the noncanonical Poisson bracket
can be written for arbitrary flows. However, for the arbitrariness one should pay by
the bracket degeneracy, i.e., by existence of Casimirs annulling noncanonical brackets.

6 Ertel’s Theorem

In this section and in the next ones we show, by following mainly results expounded
in [41, 43], that for perfect fluids with arbitrary dependence of the pressure on the
fluid density and entropy the Ertel’s theorem as well as the Kelvin theorem about
the conservation of the velocity circulation are a consequence of the specific gauge
symmetry connected with the relabeling of fluid particles. We discuss also the role
played by this symmetry in the Hamiltonian structures.
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The Ertel’s theorem [42] for a perfect fluid says that the quantity

IL =
(Ω∇S)

ρ
(6.1)

is the Lagrangian invariant. Here Ω = curlv is the vorticity, v is the fluid velocity
which satisfies the Euler equation,

∂v

∂t
− (v∇)v = −∇p

ρ
(6.2)

and S the specific entropy advected by the fluid,

∂S

∂t
+ (v∇)S = 0. (6.3)

The density ρ is defined from the continuity equation,

∂ρ

∂t
+ div(ρv) = 0. (6.4)

We omit a proof of this theorem validity of which can be checked by direct calculations
(see, for instance, [53]).

The invariance of IL means that IL depends only on the Lagrangian coordinates
a, and it does not change in time moving together with a fluid particle.

As was mentioned before, the choice of the Lagrangian variables is arbitrary:
they label each fluid particle. Therefore often these coordinates are called as the
Lagrangian markers. Usually the Lagrangian coordinates are chosen to coincide
with the initial positions of fluid particles, r|t=0 = a. Thus, a transition from one
(Euler) description to another (Lagrangian) one is accomplished by means of the
change of variables

r = r(a, t) (6.5)

with a being a label of each fluid particle. Velocity of the particle at the point r is
given by the usual formula

v(r, t) = ṙ|a (6.6)

where dot means derivative with respect to time t. In terms of the Lagrangian
variables, the solution to the equations (6.4) and (6.3) can be written as follows,

ρ(r, t) = ρ0(a)/J, S(r, t) = S0(a), (6.7)

where J = det||Ĵij|| is a Jacobian and

Ĵiα =
∂xi

∂aα
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is a Jacobi matrix of the mapping (6.5), which is assumed to be one-to-one. Further
we will suppose J 6= 0 everywhere, that guarantee the existence of the mapping
inverse to (6.5). The Jacobi matrix plays the basic role. Its knowledge allows to
determine not only the main flow parameters but also its geometrical characteristics,
in particular the metric tensor. The equation of motion for the Jacobi matrix follows
directly from the definition of the velocity (6.6). Consider the vector δr connected
two nearest fluid particles,

δr = r(a + δa, t)− r(a, t).

Using the definition (6.6) it is easy to get the equation for this quantity,

dδr

dt
= (δr,∇)v. (6.8)

Expanding then δr relative to the small vector δa,

δxi = Ĵijδj, (6.9)

we arrive at the equation of motion for the Jacobi matrix,

d

dt
Ĵ = UĴ, (6.10)

containing the matrix elements

Uij =
∂vi

∂xj

.

The symmetric part of U ,

B =
1

2
(U + UT ),

is a stress tensor, and its antisymmetric part corresponds to the vorticity,

Ω =
1

2
(U − UT ).

Hence the equation for the matrix inverse to Ĵ is

d

dt
Ĵ−1 = −Ĵ−1U (6.11)

that in the component notation has the form

d

dt

∂aα

∂xi

= −∂aα

∂xj

∂vj

∂xi

. (6.12)

The metric tensor is defined by means of distances between two nearest La-
grangian particles,

(δxi)
2 = gikδaiδak,
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and equal to
gik = ĴliĴlk.

The invariant IL is local in Lagrangian variables. Therefore if one takes its
convolution with arbitrary function f(a), then one can get the infinite family of
the conservation laws in the integral form

Ii =
∫

IL(a)f(a)da. (6.13)

To begin with, we show that for barotropic fluids (when pressure p depends only
on the density ρ) the Kelvin theorem follows from this relation. Notice that in this
case there is one additional freedom: the entropy S has no link with the pressure
and therefore instead of S in (6.2) and (6.7) we can take an arbitrary function of
Lagrangian markers a. Also one should note that in the first equation of (6.7),
without any loose of generality, one can set ρ0(a) = 1 5, so that

ρ(r, t) = 1/J. (6.14)

Substitute (6.1) into (6.13) and integrate once by parts. With account of (6.7)
and Jda = dr, we get

Ii =
∫

(v, [∇f ×∇S])dr. (6.15)

Here the gradient is taken with respect to r, but functions f and S0 are functions of
a = a(x,t). Therefore come back again to the integration against a. As a result of
simple algebra we arrive at the expression,

Ii =
∫

ẋiJεijk
∂aα

∂xj

∂aβ

∂xk

∂f(a)

∂aα

∂S0(a)

∂aβ

da.

Taking then into account the identity

Jεijk
∂aα

∂xj

∂aβ

∂xk

= εαβγ
∂xi

∂aγ

(6.16)

the integral is transformed into

Ii =
∫

Aj(a)ẋi
∂xi

∂aj

da. (6.17)

Here the vector function A(a) reads:

A(a) = [∇f ×∇S0]. (6.18)

It has a zero divergence:
divA(a) = 0. (6.19)

5It corresponds to such change of variables b = b(a) which eliminates ρ0: Jab = ρ0
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Note that till now we have never used the fact that the fluid is barotropic, i.e.,
the equation (6.17) is applicable for any equation of state including the general
dependence of the pressure on both the density and the entropy. For the barotropic
case the entropy S0 can be considered as an arbitrary function of a. Therefore A(a)
can be considered also as arbitrary with the only constraint (6.19).

Let this vector function A(a) be concentrated on some closed curve: it is equal
to zero everywhere outside this curve. We will parameterize the curve by the arc
length s,

a = a(s) with a(s + l) = a(s) (6.20)

where l is the curve length.
It is then easy to check that the function

A =
∫ l

0

da(s)

ds
δ(a− a(s))ds

satisfies all necessary conditions: it concentrates on the curve a = a(s) and has zero
divergence. Plugging this formula into the integral (6.17), after simple integration,
we come to the Kelvin theorem for the barotropic fluid:

IK =
∫

C
(v(r, t), dl). (6.21)

Here the contour C, moving together with the fluid, is the image of the closed curve
(6.20). Thus, we have shown that the Kelvin’s theorem is a direct consequence of
the Ertel’s theorem applied to the case of barotropic fluids.

The Kelvin theorem is valid also for arbitrary dependence p(ρ, S). This property
is not widely known in the literature, for instance, it is absent in the Landau-Lifshits
course [53]. Curiously, the answer in this case will have the same form as (6.21).
The only difference will be connected with a choice of contour. For the barotropic
case, as we saw before, the only restriction was connected with the condition (6.19)
which provides the closure of the contour. For the general dependence p = p(ρ, S)
in addition to (6.19) one needs to satisfy the condition (6.18). According to the
latter the lines of the vector field A must lie on the surfaces of the constant entropy
S0(a). Therefore if we choose the closed contour lying on this (fluid!) surface we
immediately arrive at the Kelvin theorem (6.21). Thus, the Kelvin theorem in the
general case says that the velocity circulation is conserved in time if the fluid contour
lies on the surface S(a(r,t)) = const advected by the fluid.

To the end of this section we pay attention to one interesting interpretation of
the Kelvin theorem. According to [11] conservation of the velocity circulation can
been considered as a sequence of conservation of the relative Poincare invariant

∮
pdq. (6.22)
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For barotropic flows to each fluid particle one can correspond the Hamiltonian

h =
p2

2
+ w(ρ),

where p = ṙ, and the enthalpy w plays a role of its potential energy.
If now one takes instead of the contour in (6.22) the fluid one then it is seen that

the Poincare invariant will coincide with the velocity circulation
∮

vdr,

and, thus, the Kelvin theorem becomes a direct consequence of a conservation of the
relative Poincare invariant.

This concept has been occurred to be very useful for other hydrodynamic systems,
in particular, for some problems in plasma physics [58, 57], when the motion of a
fluid particle can be reduced to the Hamilton equation for a charge particle in a
magnetic field in a presence of a self-consistent potential. In such cases the analog
of the Kelvin theorem is simply a sequence of conservation of the relative Poincare
invariant.

7 Gauge Symmetry - Relabeling Group

In this section we consider how the conservation of the Ertel invariants follows from
the variational principle.

To begin, we make two remarks.
Firstly, let Il = (I1, ..., In) be a set of Lagrangian invariants, each of them moving

with the fluid and respectively

dIk

dt
=

∂Ik

∂t
+ v∇Ik = 0.

Then any function of Il will also be a Lagrangian invariant. To construct an Eulerian
conservative density from the given Lagrangian one it is enough to be convinced that
the quantity Ieu = ρIk obeys the continuity equation

∂Ieu

∂t
+ div(Ieuv) = 0.

The equations of ideal hydrodynamics, as we saw above, have two Lagrangian
invariants, i.e., the Ertel invariant IL (6.1) and s 6. Both these integrals generate
the following conservation law

Ii =
∫

ρf(IL, s)dr (7.1)

6To avoid a confusion only in this section we denote the entropy as s, everywhere outside this
section the entropy remains the previous notation S.
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with f(IL, s) being an arbitrary function of its arguments.
Secondly, the Euler equation (6.2) in terms of the Lagrangian variables is nothing

else but the Newton equation for a fluid particle,

ẍi = −∇ip

ρ
. (7.2)

Acting by the Jacobi matrix Ĵ to the both sides of this equation gives

∂xi

∂ak

ẍi = −1

ρ

∂p(ρ, s)

∂ak

. (7.3)

This equation in the form (7.2) or (7.3) is closed by means of Eqs. (6.7) and (6.14).
The action in terms of the Lagrangian (material) variables is written in the same

form as in classical mechanics,

S =
∫

dtL =
∫

dtdr

(
ρ
ẋ2

i

2
− ε(ρ, s)

)
(7.4)

where ε is the internal energy density connected with the enthalpy w by means of
the thermodynamic relation,

dε = ρTds + wdρ (7.5)

with T as the temperature.
Let us now check that varying the action, δS = 0, is equivalent to the equation

of motion (7.3).
At first let us pass in (7.4) from integration over r to a. As a result, the action

can then be transformed as follows,

S =
∫

dtda

(
ẋ2

i

2
− ε̃(ρ, s)

)
. (7.6)

Here the time derivative of x is taken for fixed a, ε̃ = ε/ρ is the function of ρ and
s which are defined with the help of relations (6.7), (6.14). Because only ρ in the
internal energy ε̃ contains the dependence of x through the Jacobian (6.14), the main
difficulty with a variation will be connected with the second term in (7.6).

Using both the identity (6.16) and the formula

J =
1

6
εijkεαβγ

∂xi

∂aα

∂xj

∂aβ

∂xk

∂aγ

one can get

δS =
∫

dtda

(
−ẍiδxi + ρ2 ∂ε̃

∂ρ
δJ

)
(7.7)

=
∫

dtda

(
−ẍi − 1

2

∂

∂aα

(
ρ2 ∂ε̃

∂ρ

)
εαβγεijk

∂xj

∂aβ

∂xk

∂aγ

)
δxi
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=
∫

dtda

(
−ẍi − 1

ρ

∂

∂aα

(
ρ2 ∂ε̃

∂ρ

)
∂aα

∂xi

)
δxi = 0

or

ẍi = −1

ρ

∂

∂aα

(
ρ2 ∂ε̃

∂ρ

)
∂aα

∂xi

.

Hence it is seen that the resulting equation coincides with the equation of motion
(7.3) if one puts

p(ρ, s) = ρ2 ∂ε̃

∂ρ
.

(The last equality is a direct sequence of the thermodynamic relation (7.5).)
Thus, we have proved that the equations of motion of ideal fluid in the Lagrangian

form follow directly from the variational principle.
The simplest conservation laws, i.e., the conservation of momentum

P =
∫

ẋda =
∫

ρv(r,t)dr

and the conservation of energy,

E =
∫ (

ẋ2

2
+ ε̃(ρ, S)

)
da =

∫ (
ρv2

2
+ ε(ρ, S)

)
dr

follow as a result of invariance of the action relative to two independent symmetries,
translations in space and time.

The equations of hydrodynamics, as it was shown at first in [41], have an ad-
ditional nontrivial symmetry connected with arbitrariness in the possible choices of
the Lagrangian markers. Nothing has to depend on this choice: the fluid dynamics
as well as the equations of motion remain the same. From all possible relabeling
transformations, the action invariance requirement restrains some certain class. In
the case of the barotropic fluids the action appears to be invariant if transformations
b = b(a) are incompressible, i.e., for which the Jacobian equal to 1:

J = det‖∂bi/∂aj‖ = 1. (7.8)

All these transformations form the group of diffeomorphisms preserving the volume.
(It is interesting to note that the same group governs the motion of an incompressible
fluid.) This symmetry, in accordance with the Noether theorem, generates new con-
servation laws. To find them it is enough to consider infinitesimal transformations.
In the given case those are defined by

b = a + δa

where the function δa = α(a) satisfies the condition
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∂αi(a)

∂ai

= 0 (7.9)

which is a direct sequence of Eq. (7.8).
For the general equation of state p = p(ρ, s) the invariance of the action implies

that the transformations should keep the surface s = s(a) to remain, being simul-
taneously incompressible. As a result, on the function α(a) we have one additional
constraint

[∇s× α] = 0. (7.10)

If in the first case Eq.(7.9) can be resolved by introducing the vector potential

α = curlζ,

for example, with the Coulomb gauge divζ = 0, then in the general case both equa-
tions (7.9) and (7.10) are satisfied if one puts

α = [∇s×∇ψ].

Here ψ is a scalar function and gradient is taken with respect to a.
Omitting all the intermediate derivation of the conservation law (it is the standard

procedure, for reference see, for instance, [83]) we present only the final answers:
i) For the barotropic fluid the conservation law has the form

d

dt
[∇aẋi ×∇axi] = 0

or it gives the whole conserved vector

IL = [∇aẋi ×∇axi]. (7.11)

This integral was known since the last century: it was found by Cauchy [17] (see also
[45, 44]).

Matrix notation of the equation (7.11) has the form:

Ĵ
dĴT

dt
− ĴT dĴ

dt
= Ω(0),

where index T means transposition, and the matrix Ω(0) is expressed through the
vector invariant IL with the help of formula

Ω
(0)
ij = εijkILk.

Recently this matrix representation of the equation (7.11) was used by the authors
of the paper [59] to construct a set of exact three-dimensional solutions for the Euler
equation for incompressible fluids.
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Returning to the Euler description and using the identity (6.16) this vector inte-
gral can be transformed into the form

IL = J(Ω,∇)a ≡ ρ0(a)

ρ
(Ω,∇)a. (7.12)

Here a is considered as a function of r and t. If a are the initial coordinates of fluid
particles, then the vector (7.12) can be expressed through the initial distributions
Ω0(a) and ρ0(a) as follows

IL =
Ω0(a)

ρ0(a)
.

From (7.12) it follows immediately for the vector B ≡ Ω/ρ that

B(r, t) = ĴB0(a).

Thus, the Jacobi matrix becomes the evolution operator for the vector Ω/ρ.
The invariants (7.12), indeed, are well-known in hydrodynamics but in a slightly

different form. Let us write down the equation of motion for the fraction Ω/ρ which
directly follows from Eqs. (6.2, 6.4),

d

dt
B = (B∇)v. (7.13)

Comparing this equation with the equation (6.8) for δr one can see that both quan-
tities B and δr obey the same equation. This means that the vorticity is frozen into
a fluid, the well-known statement in hydrodynamics. Sometimes this property is
called as the frozenness of the vorticity into a fluid. If now one makes the next step,
namely, multiplying Eq.(7.13) from the right by Ĵ−1 and Eq. (6.11) from the left by
Ω/ρ, after summation of the obtained results we arrive at the conservation of the
vector invariant (7.12). These integrals just consist in the mathematical formulation
of the frozenness of the vorticity into a fluid. The corresponding equation for the
vector field B is called by the frozenness equation.

ii) In the general case (for arbitrary dependence of pressure on both density and
entropy) from this vector invariant the only scalar that survives is a projection of IL
to the vector ∇s:

IL = (∇as[∇aẋi ×∇axi]).

Here all derivatives are taken with respect to a. Passing in this expression to the
Eulerian variables and using the identity

εαβγ
∂xi

∂aα

∂xj

∂aβ

∂xk

∂aγ

= εijkJ

one can get

IL =
(Ω∇s)

ρ
.
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This integral is just the Ertel invariant (6.1). Thus, the conservation of the Er-
tel invariant as well as the Kelvin theorem about the conservation of the velocity
circulation are a sequence of a specific gauge symmetry - the relabeling group.

It is interesting to follow how all the above formulas transform in two dimensions.
In this case the Ertel invariant is identically equal to zero, due to the orthogonality
of the vectors Ω and ∇s. Therefore the nontrivial answers appear only for the
barotropic fluid.

Applying the identity to (7.11) the identity

εαβ
∂xi

∂aα

∂xj

∂aβ

= εijJ,

it is easy to get that the Cauchy invariant transforms into the well-known Lagrangian
invariant:

Ω

ρ
= const(a).

Important to pay attention to that, unlike three-dimensional case, this relation does
not contain the Jacobi matrix.

Let us turn to the incompressible fluid. In this case the obtained formulas are
simplified. For example, the relation (7.12) in three dimensions is written in the form

IL = (Ω,∇)a. (7.14)

In the formula (7.14) Il coincides with

Ω0(a) = curlau,

where the vector u is defined by means of (4.19). This, in particular, means that
the transverse part of the vector u conserves (being the Lagrangian invariant), and
its temporal varying is due to its longitudinal part. Moreover, as pointed out
in the fourth section, the choice of this vector is arbitrary due to the arbitrari-
ness in the Lagrangian markers choice. The same takes place also to the vector
Ω0(a). If one performs the contact transformations b = b(a) under the condition
∂(b1b2b3)/∂(a1a2a3) = 1, then the vector Ω0(a) will be transformed by the law:

Ω̃0i(b) =
∂bi

∂aj

Ω0j(a). (7.15)

This is the transformation of the gauge type, being the generalization [45] of the
gauge transformations for the Clebsch variables (4.15) 7.

Let, as a result of these transformations, the vector Ω̃0(b) have one nonzeroth
component, say, z-component, equal to 1:

Ω̃01 = (Ω̃0∇a)b1 = 0, (7.16)

Ω̃02 = (Ω̃0∇a)b2 = 0, (7.17)

Ω̃03 = (Ω̃0∇a)b3 = 1. (7.18)

7Another approach to the gauge transformations in hydrodynamics was developed in [84].
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These relations within the given ”vorticity” Ω0(a) represent the equations to deter-
mine the dependence b(a). These are the linear differential equations of the first
order, which allow to be applied the method of characteristics. Equations for char-
acteristics here are the same for all three equations of the system (7.16),

da

ds
= Ω0(a),

that define the ”vortex” line for the Ω0(a). (Here s may be understood as the arc
length of the ”vortex” line.) Equations on the characteristic (for the component of
the b are then given by:

db1

ds
= 0, (7.19)

db2

ds
= 0, (7.20)

db3

ds
= 1. (7.21)

Two first components b1 and b2 are constant along the characteristic. Therefore
b1 and b2 can be chosen as two independent integrals c1 and c2 of the system for
characteristics (7.19), and the third component is a linear function of the arc length
s. It is important to notice that a solution of the system (7.16) can be found always,
at least, locally in the vicinity of some nonsingular surface provided by the coordinate
system given by the constants c1 and c2. Rigorously speaking this is not a global
solution as it is usual when one uses the method of characteristics.

Hence, by using the equation curlbũ = Ω̃0(b), one can reconstruct the velocity
ũ:

ũ1 =
∂φ

∂b1

, (7.22)

ũ2 =
∂φ

∂b2

+ b1, (7.23)

ũ3 =
∂φ

∂b3

. (7.24)

After substitution of these expressions into the equation (4.19) we come back to
the Clebsch representation with one pair of canonical variables (for more details, see
[44]) which yields

v = b1∇b2 +∇φ.

So, the vorticity Ω(r,t) takes the form,

Ω(r,t) = [∇b1 ×∇b2] =
∂r

∂b3

(b, t). (7.25)
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The last equality is a direct sequence of the property following which the transfor-
mation b = b(r,t) is a diffeomorphism preserving the volume. It is easy to check
also that the same expression as (7.25) where r is replaced by b satisfies the sys-
tem (7.16). In this case the first equation of the system becomes the equation
∂(b1b2b3)/∂(a1a2a3) = 1.

Thus, locally any flow of incompressible fluid can be paratmerized by one pair of
the Clebsch variables. In the general situation one needs two pairs of such variables.

8 The Hopf Invariant and Degeneracy of the Pois-

son Brackets

So far we have not discussed the question of which classes of flows are described by
the canonical variables introduced in the preceding sections.

To begin with, we consider this question for the example of an ideal incompressible
fluid.

Let a flow be parameterized in terms of Clebsch variables in some one-connected
domain,

v =λ∇µ +∇ϕ.

Take some point inside this domain and draw through this point some closed curve.
Starting from this point and constructing continiousely Clebsch variables on each
peice of this curve we come back to the point. Generally speaking, Clebsch variables
will take different values. Thus, Clebcsh variables will be multi-valued functions of
space coordinates. One partial case of fluid flows with multi-valued Clebsch variables
allows the following geometrical interpretation.

Consider a compact oriented two-dimensional manifold M2 and suppose that λ
and µ are local coordinates on this manifold.

The gauge transformations associated with the nonuniqueness of choice of the
Clebsch variables lead to the appearance of a whole family of gauge-equivalent mani-
folds, obtainable from one another by continuous deformations, preserving the surface
element:

dλdµ = dλ′dµ′.

It is therefore sufficient to select from each of such a family one representative. For
example, among the surfaces of genus zero having the same area, it is natural to
select the sphere S2.

It is easy to understand that the inverse image of any point of M2 in R3 is a
closed curve coinciding with a vortex line. This follows directly from the expression
for the curl of the velocity:

Ω =curlv = [∇λ×∇µ] . (8.1)
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The vortex line is the intersection of the two surfaces λ(r) = const, µ(r) = const. If
the variables λ and µ are single-valued functions, then the manifold M2 cannot be
a closed surface of genus g. Then the flows given by such variables have no nodes.
This fact can also be proved differently.

It is known [55],[56] that the degree of knottiness of a flow is characterized in
ideal hydrodynamics by the conserved quantity

I =
∫

(v,curlv) dr. (8.2)

The conservation of this integral follows immediately from the Kelvin theorem. In
order to illustrate this statement, following [56] we consider two closed vortex lines

Ω =
∫

κ1n1δ (r− l1(s1)) ds1 +
∫

κ2n2δ (r− l2(s2)) ds2

where n1,2 are the tangents and ds1,2 the arc elements of these curves.
Calculating the velocity circulation around the contours r = l1(s1) and r = l2(s2),

we find ∮
(v,dl1) = mκ2,

∮
(v,dl2) = mκ1

where m is the linking number of these two curves. Multiplying the first equation
by κ2 and the second by κ1, and adding the results, we get the integral I:

∫
(v,κ1dl1 + κ2dl2) =

∫
(v,curlv) dr =2mκ1κ2.

This formula is generalized without difficulty to a vortex, and then to a continuous
distribution. The conservation law (8.2) is valid not only for the infinite region but
for the finite one when the vorticity lines are tangent to the boundary.

This integral is thus identically equal to zero for a flow with the trivial topology,
in particular, for flows parameterized in terms of single-valued Clebsch variables.

We shall show that the Clebsch variables in the formulation (8.1) described knot-
ted flows, and illustrate their topological meaning.

Suppose that the variables λ and µ are local coordinates on S2. In this case λ
and µ are expressed in terms of the polar and azimuthal angles, θ and ϕ, so that

Ω =2A [∇ cos θ ×∇ϕ]

where A is a dimensional constant. Now the Clebsch variables are no longer single-
valued functions, and on a circuit around the z axis the angle ϕ acquires an addition
2π. It is also convenient to go over, in the expression for the vector field Ω, from the
angles θ and ϕ to the n-field (n2 = 1) [60]:

Ωα = εαβγ (n, [∂βn×∂γn]) . (8.3)
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We shall limit our considerations to the flows for which n tends sufficiently rapidly
at the infinity to a constant vector n0. For this class on flows R3 is isomorphic to
the four-dimensional sphere S3. Thus the classification of the flows is a problem of
classification of smooth mappings S3 → S2. Such mappings are characterized by the
homotopy group π3(S

2) = Z, i.e., any class of flows is characterized by the linked
number that coincides with the winding number of two any lines n(r) = n1 and
n(r) = n2 (n1,2 = const). The index N for smooth mappings is called the Hopf
invariant [61]. One can show that the Hopf invariant coincides with the integral I
up to a constant factor [62]:

I =
∫

(v,Ω) dr =64π2NA2.

The derivation of this relation is based on the well-known formula of Gauss for the
linking number of two curves.

It should be mentioned that in the quantum case, according to [62], A = h̄/2m.
The remaining manifolds are od secondary interest from the point of view of topology.
So a manifold M2, which is a surface with boundary, is homotopically to a bouquet
of circles. Therefore its homotopic group π3 is trivial. The groups π3 are also trivial
for closed surfaces of genus g ≥ 1. Topological nontrivial situations occur only for
surfaces with zero genus.

We now give an example of a nontrivial mapping with N = 1 (Hopf mapping):

(n, σ) = q+σ3q, (8.4)

q = (1− irσ) (1 + irσ)−1

where σ are the Pauli matrices.
In toroidal coordinates, one has

x + iy = sinh U
cosh U+cos β

eiα, z = sin α
cosh U+cos β

,

(0 ≤ U < ∞, 0 < α, β < 2π) ,

and Eq. (8.4) reads

arctan (ny/nx) = α− β, nz = 1− 2 tanh2 U.

These formulas show that the flow looks as follows: the whole space is sliced up
by the tori U = const, while any vortex line coils up on a torus, making one loop.
Thus any vortex line links once. The expressions for Ω and v, calculated from (8.4)
are not solution of the stationary Euler equations, and can therefore be used as initial
conditions for (5.9). It is obvious that the evolution of such a distribution does not
take the solution out of the given class with Hopf invariant N = 1. The evolution of
the vector field n is determined from the equation

nt + (v∇)n =0 (8.5)
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which is equivalent to the evolution equation for the variables λ and µ. Equations
(8.5) are also Hamiltonian,

nt =2A

[
n×δH

δn

]

and differ from the familiar Landau-Lifshitz equations only by the choice the Hamil-
tonian H.

The Poisson bracket in this case coincides with the BKK bracket (2.8), (2.11):

{F, G} = 2A
∫ (

n

[
δF

δn
× δH

δn

])
dr.

When we go over in this bracket from the n-field to Ω according to formula (8.3)
we get the Poisson bracket (5.8). It is important to note that (5.8) is a degenerate
bracket with respect to the invariant I: {I, ...} = 0, which again shows its origin.
From one side, it is connected with its topology, from another side, with the Kelvin
theorem. One should remind that the latter is a sequence of the gauge symmetry of
the Lagrangian markers.

As we see below, the question about degeneracy of the Poisson brackets for arbi-
trary equation of state directly is connected the gauge symmetry.

Let us discuss in more details this question for the Poisson hydrodynamic brack-
ets. For this aim, we consider the most general form of the bracket for ideal hy-
drodynamics, namely, for the nonbarotropic fluids. The bracket in this case has the
form of (5.6)

{F, G} =
∫ {(

∇δF

δρ
,
δG

δv

)
−

(
∇δG

δρ
,
δF

δv

)}
dr (8.6)

+
∫ (

curlv

ρ
,

[
δF

δv
× δG

δv

])
dr +

∫ (∇S

ρ
,

[
δF

δv

δG

δS
− δG

δv

δF

δS

])
dr.

By substituting the integral (7.1), Ii =
∫

ρf(Il, S)dr, into this expression one can
verify that the integral commutes with any functional,

{Ii, .} = 0.

In accordance with the definition of the section 1, this integral represents the Casimir
against the bracket (8.6).

One should remind that the fact of the conservation of the integral (7.1) is a
sequence of the special gauge symmetry of the ideal hydrodynamics equations, that
is, as we see, responsible also or the degeneracy of the Poisson brackets.

In order to transform from this bracket to the canonical one it is necessary to
resolve the integral (7.1) by introducing new coordinates. We have already known one
answer to the question how to do it. If we take the expression (4.17) for the velocity
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and put there instead of µ the Ertel invariant Il then the integral (7.1) transforms
into the dynamical conservation law with respect to the canonical bracket

{F, G} =
∫ {[

δF

δρ

δG

δϕ
− δF

δϕ

δG

δρ

]
+

[
δF

δλ

δG

δIl

− δF

δIl

δG

δλ

]
+

[
δF

δβ

δG

δs
− δF

δs

δG

δβ

]}
dr

so that
{Ii, H} = 0.

We can also remark that, as it was shown by van Saarlos [52], the transition from
the Lagrangian description in terms of the action (7.6) to the canonical variables is
determined through the change (9.11) or (4.20).

9 Inhomogeneous Fluid and Surface Waves

In this section we introduce canonical coordinates for the description of nonlinear
waves in an ideal fluid of variable density. Here one distinguishes two types of
waves. The first type refers to so-called internal waves, propagating in a continuous
medium with a smooth inhomogeneity. The second type refers to the situation
where the density gradient changes sharply over the size of the wave length, and
in the limit represents simply a jump. In this limit we talk about surface waves.
Canonical variables can be introduced in both cases within the framework of the
scheme developed in the preceding sections.

Consider an ideal fluid of varying density in the presence of a constant gravita-
tional field g anti-parallel to the z axis. The fluid is assumed to be locally incom-
pressible. This means that the density is convected along the fluid and is therefore
a Lagrange variable:

∂ρ

∂t
+ (v∇)ρ = 0 for divv = 0.

These two equations therefore appear in the Lagrangian as constraints:

L =
∫ [

ρ
v2

2
− U (ρ, r)− α

(
∂ρ

∂t
+ (v∇)ρ

)
+ ϕdivv

]
dr, (9.1)

where U(ρ, r) is the density of potential energy in the presence of the field g, given
by the expression

U (ρ, r) = g
[
ρ (r⊥, z) (z − z′)−

∫ z

z′
ρ0 (z′′) dz′′

]
. (9.2)

The first term in this expression corresponds to the work in lifting the fluid
element to the point z from the equilibrium point z′, determined from the condition
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for equality of the equilibrium density ρ0(z
′) and the density of fluid at the given

point,
ρ0 (z′) = ρ (r⊥, z) .

This relation gives z′ as a function of the density, z′ = z′ (ρ). The second term in
(9.2) corresponds to the potential of the Archimedean force.

Variations of the Lagrangian with respect to v and ϕ lead us to the equations
[26]:

ρv = ∇ϕ + α∇ρ for div [ρ−1 (∇ϕ + α∇ρ)] = 0, (9.3)

giving the connection between the new and old variables. Varying with respect to
variable ρ, we get an equation for the potential α:

∂α

∂t
+ (v∇)α +

v2

2
− ∂U

∂ρ
= 0

where ∂U/∂ρ = g(z − z′).
Next, substituting (9.3) in the Euler equation (4.8) and using the equations of

motion for α and ρ, we obtain up to constant an expression for the pressure p,
analogous to the Bernoulli integral:

p = −ρ
v2

2
− ρg (z − z′) +

(
∂

∂t
+ (v∇)

)
ϕ + const

The Hamiltonian is formed in the standard way and coincides with the total energy

H =
∫ [

ρ
v2

2
+ U(ρ, r)

]
dr,

while the variables α and ρ occur to be canonically conjugate:

∂α

∂t
=

δH

δρ
,

∂ρ

∂t
= −δH

δα
.

The parameterization, presented here, for the velocity in terms of the density ρ
and α imposes strong restrictions on the form of the initial distribution. As we
see from (9.3), the curl of the mass current at all times, including the initial time, is
orthogonal to the density gradient. Such motions are the analog of potential motions
in a homogeneous fluid. This scheme can considerably be improved if one includes
”nonpotential” motions. As far as the noncanonical Poisson brackets concern, they
were introduced in the paper [64].

If one needs to consider weakly nonlinear oscillations in a stratified fluid one
should expand the Hamiltonian in powers of α and δρ. In particular, the well-known
Boussinesq approximation is obtained if the density in the kinetic energy is replaced
by some averaged constant quantity.
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Now let us consider one important limiting case of a stratified fluid, when the
stratification is only due to a free boundary.

First we look at potential motions. For them the Lagrangian has the same form
as before, in which the density should be regarded as constant throughout the volume
of the fluid, i.e.,

ρ = ρ0θ (z − η(r⊥, t)) .

Here θ(z) is the Heaviside function, and η(r1, t) is the deviation of the free surface

from the horizontal axis z = 0. The element of free surface dsn = dr⊥
√

1 + (∇η)2

and the vector normal to it, n = (−∇η)[1+(∇η)2]−1/2, are expressed in terms of the
function η(r⊥) explicitly, as is the potential energy

U =
∫ {

ρ0gη2

2
+ σ[

√
1 + (∇η)2 − 1]

}
dr⊥

in which we have taken into account the surface tension with coefficient σ.
It is easy to see that the continuity equation in the present case becomes the

kinematic condition
dη

dt
=

(
∂

∂t
+ v∇

)
η = 0 (9.4)

In accordance with this, the Lagrangian expresses

L =
∫

dr⊥
∫ η

−h
dz

(
ρ0v

2

2
+ ϕ divv

)
+

∫
ψ

(
∂η

∂t
− υn

√
1 + (∇η)2

)
dr⊥ − U. (9.5)

Here

υn =
[υz − v∇η]z=η√

1 + (∇η)2

is the normal component of the velocity and ψ = −αρ0 the Lagrange multiplier given
on the free surface. Variation of L with respect to v within the bulk leads to the
potential equation ρ0v = ∇ϕ where ϕ is determined from the solution of the Laplace
equation ∆ϕ = 0. Variation of L with respect to v on the boundary (for fixed η)
gives the boundary conditions for the Laplace equation

ϕ|z=η = ψ. (9.6)

The variation of the Lagrangian with respect to η is nontrivial. For this it is
convenient to rewrite all the terms in (9.5) containing v in the form of a volume
integral which we designate as Lv. Then, taking (9.6) into account, we have

Lv =
∫

dr⊥
∫ η

−h
dz

(
ρov

2

2
− v∇ϕ

)
.
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The variation δLv for a change in η is composed of two terms. The first is caused by
the volume change: ∫

dr⊥

(
ρ0v

2

2
− v∇ϕ

)
δη.

The second arises when we consider variations of v and ϕ, not caused by the change
in shape of these functions, for example,

δϕ = ϕ(z − δη)− ϕ(z) = −∂ϕ

∂z
δη.

Therefore the contribution to δLv of this variation has the form
∫

dr⊥υn

√
1 + (∇η)2

∂ϕ

∂z
δη.

Collecting all terms together we finally get

∂ψ

∂t
= −ρ0gη + σ div

∇η√
1 + (∇η)2

(9.7)

+

[
ρ0v

2

2
− v∇ϕ +

∂ϕ

∂z
υn

√
1 + (∇η)2

]

z=η

.

The Hamiltonian H, as before, coincides with the total energy of the system,

H =
∫

dr⊥
∫ η

−n
dz

ρ0(∇ϕ)2

2
+ U,

while the Hamilton equation has the form [25]:

∂η

∂t
=

δH

δψ
,

∂ψ

∂t
= −δH

δη
.

Let us now consider the expansion of the Hamiltonian H in powers of the canon-
ical variables. In the coordinate representation each term in this series is a nonlocal
functional of η and ψ; the reason for this is that at each step of the iteration we must
solve the Laplace equation. After applying Fourier transformation with respect to
the coordinates in the horizontal plane and successive approximations, one can get

H =
1

2

∫
(g + σk2) |ηk|2 dk +

1

2

∫
ktanh(kh)ψ |ψk|2 dk

+
1

2 · 2π
∫

Lkk1k2ψkψk1ηk2δk+k1+k2dkdk1dk2 + ..., (9.8)

where

Lkk1k2 =
1

2
(k2 + k2

1 − k2
2)− kk1tanh(kh)tanh(k1h), ( ρ0 = 1).
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The expansion in (9.8) is performed with respect to the parameter kη, having the
significance of a characteristic angle of inclination of the fluid surface.

In the limit of shallow water kh → 0, the above expression reduces to

Lkk1k2 → −(kk1),

i.e., the cubic term of the expansion H1 becomes local in the variables ψ and η:

H1 =
1

2

∫
η(∇ψ)2dr1. (9.9)

In particular, the transition to the known Boussinesq model (cf., for example,[67])
is accomplished if we take (9.9) for the interaction Hamiltonian, while we include in
H0 the terms proportional to h3:

∂η

∂t
= −h∆ψ − divη∇ψ +

h3

3
∆2ψ =

δH

δψ
,

∂ψ

∂t
= −gη + σ∆η − (∇ψ)2

2
= −δH

δη

where

H =
1

2

∫ {
gη2 + σ (∇η)2 + h (∇ψ)2 − h3 (∆ψ)2 + η (∇ψ)2

}
dr1.

In the limit of deep water, Lkk1k2 behaves like

Lkk1k2 → −(kk1)− kk1.

The transition to normal variables is given by the formulas

ηk =

(
ωk

2(g + σk2

)1/2

(ak + a∗−k),

ψk = −i

(
g + σk2

2ωk

)1/2

(ak − a∗−k),

where ωk = [k(g + σk2)tanh(kh)]1/2 is the dispersion law for surface waves.
In the same spirit as this was done in Section 4, one can include the contribution

from nonpotential flows [1]. For this it is necessary to involve an additional constraint
in the Lagrangian,

∂µ

∂t
+ v∇µ = 0,

so that the Lagrangian has the form,

L =
∫

dr⊥
∫ η

−h
dz

(
ρ0v

2

2
+ ϕ divv − λ(µt + v∇µ)

)
(9.10)
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+
∫

ψ

(
∂η

∂t
− υn

√
1 + (∇η)2

)
dr⊥ − U.

With such a choice for the Lagrangian, v is given, as in Section 4, in terms of the
Clebsch variables λ and µ:

ρ0v = λ∇µ +∇ϕ. (9.11)

whose equations have been derived in (4.9) and (4.13). The function ψ, as for a
potential flow, has the same meaning

ϕ|z=η = ψ. (9.12)

The equation for this value takes the form of (9.7) where the velocity v is replaced
by the expression (9.11).

Another way to introduce ”surface” canonical variables is given in [23]. In a
similar way we can introduce canonical variables into a stratified fluid, taking into
account the ”nonpotential” variables λ and µ.

Noncanonical Poisson brackets for the case of arbitrary flows bounded by a free
surface were introduced in the paper [65]. The bracket represents the combination
of the Zakharov’s bracket [24],[25] for potential flow and the bracket (5.7):

{F, G} =
∫ (

curl v,

[
δF

δv
× δG

δv

])
dr +

∫

Σ

(
δF

δΣ

δG

δψ
− δG

δΣ

δF

δψ

)
ds. (9.13)

Here F and G are functionals of the velocity v (divv = 0) and the free surface
Σ, ds the surface element. The variational derivatives of δF/δv and δG/δv are
divergence free. The potential part of the velocity is introduced by the velocity
unique decomposition (for more details, see [66])

v = w +∇Φ

where w is divergence free and tangent to Σ. The potential Φ is determined by the
equations,

∆Φ = 0,
∂Φ

∂n
= vn.

In Eq.(9.13) ψ is the limit of Φ on the free surface Σ.
The equations of motion then read

∂v

∂t
+ (v,∇)v = −∇p,

∂Σ

∂t
= vn

with two conditions
divv = 0, p|Σ = σκ

where κ is the mean curvature of the free surface. By means of the bracket (9.13),
they can be written in the form

∂v

∂t
= {v, H}, ∂Σ

∂t
= {Σ, H}.
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There is also no difficulty in introducing canonical variables for the description of
interacting internal and surface waves. For this case the Lagrangian is a combination
of the Lagrangians (9.1) and (9.5).

We would like to mention the interesting paper [70] where the canonical Hamil-
tonian approach was developed for the description of the interaction of surface waves
and vortex filaments. The canonical variables introduced in this paper can be ex-
tracted from the general noncanonical Poisson brackets (9.13) by the corresponding
limit to the vortex filament.

The introduction of canonical variables for internal and surface waves is also pos-
sible for more complicated systems, for example, for a dielectric fluid in an external
electric field or a ferro-fluid in a magneto-static field [69]. For these systems the
Hamiltonian coincides with the free energy in the external electric (magnetic) field,
and the canonical variables remain the same as in the absence of the field.

10 Hamiltonian Formalism for Plasma and Mag-

netohydrodynamics

The simplest hydrodynamic models of a plasma belong to the type of (4.1), (4.2).
Let us consider the hydrodynamics of electrons interacting with a potential electric
field in a plasma without magnetic field:

∂ρ

∂t
+ divρv = 0

∂v

∂t
+ (v∇)v = −∇

[
e

m
ϕ +

3T

mρ0

δρ

]
(10.14)

∆ϕ = −4πe
δρ

m
, δρ = ρ− ρ0.

Here e and m are the electron charge and mass, respectively, and T is the tem-
perature.

The internal energy of such a system is composed of the electrostatic energy

Ees =
1

8π

∫
(∇ϕ)2dr =

e2

2m2

∫ δρ(r)δρ(r′)
|r− r′| drdr′

and the gas-kinetic energy

ET =
3

2

T

mρ0

∫
δρ2dr.

It is obvious that
e

m
ϕ =

e2

m2

∫ δρ(r′)
|r− r′|dr =

δEes

δρ
, (10.15)
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3T

mρ0

δρ =
δET

δρ
. (10.16)

Formula (10.16) shows that the system (10.14) belongs to the type of (4.1), (4.2)
with Ein in the general form (4.6). The diagonalizing transformation for H0 in this
case has the form (4.4), in which one should set ω2

k = ω2
p +3k2T/m (ω2

p = 4π0e
2/m2)

while the coefficients U and V are determined from formulas (4.5), in which we
should take g = 0.

Now let us consider the hydrodynamics of slow motion of a nonisothermal plasma,
whose electron temperature Te significantly exceeds the ion temperature. By slow
motion we shall understand wave motion with phase velocities ω/k much smaller than
the electron thermal velocity, but large compared to the ion thermal velocity. In this
case we can assume that the electrons are distributed according to the Boltzmann
law, ρe = ρ0e

eϕ/Te , while the ion thermal motion can be neglected. Then:

∂ρ

∂t
+ divρv = 0,

∂v

∂t
+ (v∇)v = − e

M
∇ϕ, (10.17)

∆ϕ =
4πe

M
(ρ− ρ0e

eϕ/Te), (10.18)

where M is the ion mass.
This system also conserves the energy

H =
∫ ρv2

2
dr + Ein. (10.19)

Here Ein is the internal energy, equal to the sum of the electrostatic energy Ees =
(1/8π)

∫
(∇ϕ)2dr and the thermal energy of the electron gas

ET =
Te

M

∫
ρ0

{
eeϕ/Te

(
eϕ

Te

− 1
)

+ 1
}

dr.

Calculating the variational derivative of Ein with respect to the ion density ρ, we get

δEin

δρ
=

∫
ϕ(r′)

{
− 1

4π
∆

δϕ(r′)
δρ(r)

+
e2ρ0

M
eeϕ/Te δϕ(r′)

δρ(r)

}
dr′.

On the other hand, by varying the Poisson equation we have:

− 1

4π
∆

δϕ(r′)
δρ(r)

+
e2ρ0

M
eeϕ/Te δϕ(r′)

δρ(r)
=

e

M
δ(r− r′).

Comparing the two expressions, we arrive at

δEin

δρ
=

e

M
ϕ.
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From this it follows that the system (10.18) also belongs to type (4.1), (4.2).
We note that for long-wave (krd ¿ 1, where rd = (Te/4πn0e

2)1/2 is the Debye
radius) oscillations of small amplitude, the system of Boussinesq equations follows
from (10.18). It is easy to see that in this limit the potential is determined from the
Poisson equation,

eϕ

Te
≈ δρ

ρ0

− 1

2

(
δρ

ρ0

)2

+ rd2∆
δρ

ρ0

.

Substitution of this expression in (10.19) leads to the following form for the
internal energy (cf. (4.6)),

Ein =
∫ ρ0c

2
s

2




(
δρ

ρ0

)2

− 1

3

(
δρ

ρ0

)3

− rd2

(
∇δρ

ρ0

)2

 dr, c2

s = Te/M.

We now go over to a consideration of the relativistic gas dynamics of electrons,
interacting with an arbitrary, nonpotential electromagnetic field:

∂ρ

∂t
+ divρv = 0

(
∂

∂t
+ v∇

)
p = eE+

e

c
[v ×H]− 3T∇δρ

ρ0

,

curlE = −1

c

∂H

∂t
, curlH =

4π

c

eρ

m
v +

1

c

∂E

∂t
,

divE =4πeδρ/m.

For the electromagnetic field we introduce scalar and vector potentials ϕ and A,
where we choose for A the Coulomb gauge, divA = 0.

We know that in the Coulomb gauge the vector potential is a canonical variable,
if we change from ordinary momentum to generalized momentum,

p = p1 − e

c
A,

determined from the equation:

∂p1

∂t
+∇(m2c4 + p2c2)1/2 − [v × curlp1] + e∇ϕ = −3T∇δρ

ρ0

.

The canonical conjugate of A is the vector

B =
1

4πc

(
∇ϕ +

1

c

∂A

∂t

)
= − E

4πc
.
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The other variables are introduced by analogy with the Clebsch variables:

p1

m
=

λ

ρ
∇µ +∇ϕ.

Here (λ, µ), (ρ, ϕ), (B,A) are canonically conjugate quantities,

∂λ

∂t
=

δH

δµ
,

∂µ

∂t
= −δH

δλ
,

∂ρ

∂t
=

δH

δϕ
,

∂ϕ

∂t
= −δH

δρ
,

∂A

∂t
=

δH

δB
,

∂B

∂t
= −δH

δA

with the Hamiltonian

H =
∫ [

ρ

m
(p2c2 + m2c4)1/2 +

3

2
T

δρ2

mρ0

+
1

8π
(curlA)2

]
dr (10.20)

+
∫ [

2πc2B2 − c(B∇ϕ) +
1

4π
ϕ∆ϕ

]
dr

coinciding with the total energy of the system if the Poisson equation is satisfied
identically.

We note that canonical variables are introduced analogously for the two-fluid
model of the plasma. A more detailed presentation of these results can be found in
the papers [34, 35].

Another widely used model in plasma physics is the set of magnetohydrodynamic
(MHD) equations, describing low-frequency (hydrodynamic) motions of the plasma
as a whole. These equations, in particular, can be obtained from the equations of
the two-fluid model.

For barotropic flows, the equations of MHD have the form

∂ρ

∂t
+ divρv = 0 (10.21)

∂v

∂t
+ (v∇)v = −∇δε

δρ
+

1

4πρ
[curlH×H] , (10.22)

∂H

∂t
= curl[v ×H].

For this system, just as for the equations of hydrodynamics, the transition to
canonical variables is accomplished using the Lagrange approach. For this we shall
start from the well-known expression for the Lagrangian of a fluid interacting with the
electromagnetic field in the MHD approximation. This means that in the Lagrangian
we drop small terms of order v/c. Thus, for example, in the MHD approximation
we should neglect the contribution from the electric field (E ∼ (v/c)H) compared to
the corresponding contribution from the magnetic field.
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We also pay attention to one important consequence of Eqs. (10.22) following to
which the magnetic field is frozen in a plasma [72]. It corresponds to that the vector
H/ρ moves together with the fluid particles. In other words, each magnetic field line
is displaced together with the particles that are on it. This fact allows one to regard
the magnetic field H and the density ρ as entering as generalized coordinates.

Thus the Lagrangian in the MHD approximation and including the constraint
has the form:

L =
∫ [

ρv2

2
− ε(ρ)− H2

8π
+ S

(
∂H

∂t
− curl[v ×H]

)
+ ϕ

(
∂ρ

∂t
+ divρv

)
+ ψdivH

]
dr.

Varying L with respect to the variables v, ρ and H, we get

ρv = [H× curlS] + ρ∇ϕ, (10.23)

∂ϕ

∂t
+ v∇ϕ− v2

2
+ ω(ρ) = 0, (10.24)

∂S

∂t
+

H

4π
− [v×curlS] +∇ψ = 0. (10.25)

From this we see that the undetermined Lagrange multipliers enter as generalized
momenta. The appropriate transition to these variables is accomplished using for-
mula (10.23), and their evolution is determined from Eqs.(10.24), (10.25). The gauge
function ψ that enters these equations is chosen for convenience. For the natural con-
dition, div S = 0

ψ = ∆−1div [v×curlS] + ψ0

where ψ0 is an arbitrary solution of the Laplace equation ∆ψ0 = 0. In particular,
for finite motions of the plasma in a magnetic field H0, it is convenient to choose the
quantity S so that S → 0 for r →∞. It is then obvious that

ψ0 = (H0r)/4π.

The equivalence of the system of equations here obtained and the MHD equations
is verified by a direct substitution of the velocity in the equation of motion (10.22).

Now changing to the Hamiltonian description, we get [33]:

∂ρ

∂t
=

δH

δϕ
,

∂ϕ

∂t
= −δH

δρ
,

∂H

∂t
=

δH

δS
,

∂S

∂t
= −δH

δH
,

where the Hamiltonian

H =
∫ [

ρv2

2
+ ε(ρ) +

H2

8π
− ψdivH

]
dr

has a value that also coincides in value with the total energy of the system.
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Another way for introducing canonical variables in MHD was suggested in [73].
In this paper both the velocity and the magnetic field are parameterized in terms of
the Clebsch-type potentials,

v = ∇φ + ρ−1(µ∇λ + M∇Λ),

H = [∇λ×∇Λ].

So doing the variables λ and µ, Λ and M , ρ and φ form pairs of canonically conjugated
values. It is possible to show that the given parametrization for H and v can be
reduced by appropriate gauge choice to the change (10.23).

For the incompressible fluid the canonical variables are H and S: when taking
into account that the potential ϕ can be eliminated using the continuity equation

∆ϕ = −div
1

ρ0

[H× curlS],

the Hamiltonian simplifies into the form

H =
∫ [

ρ0v

2
+

H2

8π
+ ψdivH

]
dr.

For barotropic flows the variables (ρ, φ) (H,S) determine the canonical Poisson
bracket:

{F, G} =
∫ {[

δF

δρ

δG

δϕ
− δF

δϕ

δG

δρ

]
=

[
δF

δH

δG

δS
− δF

δS

δG

δH

]}
dr. (10.26)

This bracket, as in the hydrodynamic case, allows recalculating to the natural vari-
ables, i.e., to the velocity v, the density ρ and the magnetic field H. As a result, the
noncanonical bracket represents itself the combination of (5.6) and the additional
term containing the variational derivatives from the magnetic field [15]:

{F, G} =
∫ {(

∇δF

δρ
,
δG

δv

)
−

(
∇δG

δρ
,
δF

δv

)}
dr (10.27)

+
∫ (

rotv

ρ
,

[
δF

δv
× δG

δv

])
dr +

∫ (
H

ρ
,

[
rot

δF

δH
× δG

δv

] [
rot

δG

δH
× δF

δv

])
dr.

Refusing from the barotropicy to this bracket one can get the additional term (com-
pare with [15]): ∫ (∇S

ρ
,

[
δF

δv

δG

δS
− δG

δv

δF

δS

])
dr. (10.28)

The bracket (10.27,10.28) occurs, as in a pure hydrodynamic limit (H = 0),
degenerate.
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The simplest annulators of the bracket was probably found in the paper [74]:

C =
∫

ρf


S,

H∇
ρ

S,

(
H∇
ρ

)2

S, ...


 dr (10.29)

It can be verified by the direct calculations that the Lagrangian invariants which
generate the integral (10.29) are written in the form:

In =

(
H∇
ρ

)n

S. (10.30)

The integrals (10.29), however, are only one of the possible sets of the Eulerian
integrals of motion. There exist the recurrent formula for construction of such type
integrals they can be obtained from the Lagrangian invariants I, the frozen field B,
the density ρ and the field of the Lamb impulse p [76, 75]. These quantities are
defined from the corresponding equations of motion:

∂I

∂t
+ (v∇)I = 0, (10.31)

∂B

∂t
+ (v∇)B = (B∇)v, (10.32)

∂p

∂t
+ (v∇)p + (p∇)v + [p× rotv] = 0. (10.33)

Recurrent procedure for the construction of Lagrange invariants consists of a few
steps.

At first, it is easy to verify that the definition of the fields B and p by means of
equations (10.32) and (10.33) remains without changes after their multiplication by
I:

B′ = IB, p′ = Ip, (10.34)

i.e. new fields B′ p′ obey the same equations as those for B and p.
At the next step by the given I, p, B we construct a new set of quantities

I ′, p′, B′, which possess the same properties:

p′ = ∇I, B′ =
1

ρ
rotp′, I ′ =

1

ρ
div(ρB). (10.35)

At the third step, by substituting (10.34) into (10.35), we obtain

I ′ = v ·B, B′ =
1

ρ
[p,p′], B′ =

1

ρ
[∇I,∇I ′]. (10.36)

The further recursion gives the relations:

p = ρ[B×B′], I =
1

ρ
(p, [∇I ′∇I ′′]), I =

1

ρ
(∇I ′[∇I ′′ ×∇I ′′′]). (10.37)
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Because an arbitrary function of Lagrangian variables is again a Lagrangian in-
variant then this in combination with (10.34), (10.35, (10.36), (10.37) set the pre-
scription of the Lagrangian invariant reproduction. For example, the Lagrangian
invariants of the first generation, consisting of the quantities ρ, p, B and three La-
grangian invariants given initially plus a lack constructed by means of (10.34)-(10.37),
can be represented in the form [75]:

I ′0 = p×B, I ′ik =
1

ρ
(p[∇Ii∇Ik]),

I ′k = (B∇)Ik, I ′ =
1

ρ
(∇I1[∇I2∇I3]). (10.38)

Using this procedure of multiplication one can get the next generations of Lagrangian
invariants.

Of particular interest is a question about Lagrangian invariant construction in
two-dimensional case. Here to construct an infinite hierarchy of invariants it is
enough to have two input invariants. As it was shown in [78] in 2D case the whole
set of conserved quantities forms highly complicated Lie algebra, which contains very
interesting subalgebra, i.e., the loop algebra with layer in algebra conserving area of
diffeomorphisms of a plane.

Let us apply this approach to the MHD equations.
In the MHD case with an arbitrary equation of state p = p(ρ, S) one should take

in the capacity of I one should consider the entropy S, instead of the vector field B
- H/ρ, and the field p should be changed by the vector potential of the magnetic
field A (H = rotA), imposing the gauge [75]:

∂A

∂t
= [v × rotA]−∇(vA) ≡ −(v∇)A− (A∇)v − [rotv ×A].

It is easy to see that for MHD the transformation (10.35) reads as follows:

A′ = ∇S, B′ =
H

ρ
, I ′ = 0.

The first equation reflects the gauge freedom of the vector potential, the second
formula in this case is the definition of the frozen field.

If now in the third formula of (10.35) one takes instead of B its transforming
value from (10.34), then as a result one can get the second (after S) Lagrangian
invariant:

I2 =
(H∇)S

ρ
.

By its structure it is familiar to the Ertel invariant for hydrodynamic flows. Multiple
using of this transformation leads to the invariants (10.30):

In =

(
H∇
ρ

)n

S.
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The transformation (10.36) generates another Lagrangian invariant

I3 =
(A,H)

ρ
.

Integration of I3 with the help of formula (6.1) reduces to the integral of motion

Ik =
∫

(A,H)dr,

which characterizes the degree of knottiness of lines of the magnetic field H [56].
Representation of three invariants I1 = S, I2 and I3, and also of the magnetic

field H and its vector potential A permits, by use of the formula (10.38), to find
all sets of Lagrangian invariants and together with them the Eulerian integrals of
motion

C =
∫

ρf(I1, I2, ...)dr. (10.39)

In the case of barotropic flows the given recursion undergoes changes. At first,
one should exclude the entropy S as a quantity not entering into the equations of
motion. Therefore from the set of Lagrangian invariants Ii (i = 1, 2, 3) of the first
generation, explicitly expressed in terms of H and ρ, the only invariant I2 = AH

ρ

remains. With its help all series of the integrals of motion is written as follows [49],
[75]:

C =
∫

ρf

(
I2,

H∇
ρ

I2, ...

)
dr (10.40)

Besides, in the barotropic case a new integral should be added. This is the topological
invariant

Ct =
∫

(v,H)dr,

characterizing the degree of cross knottiness of the magnetic field and velocity lines
[56].

It is possible to show that all presented above integrals are the Casimirs relative
to the bracket (10.27, 10.28).

Thus, we demostrated how canonical variables are introduced for the hydrody-
namical models of plasma. These variables to some extent generalize the Clebsch
variables for ideal hydrodynamics. Their difference exhibits in that, firstly, a number
of canonical variables increases, so that electromagnetic field itself represents addi-
tional canonical variable, and, secondly, due to this fact the Hamiltonian structure of
the equations changes (complicates) that becomes especially transparent for MHD.

11 The Hamiltonian Formalism in Kinetics

In this section we introduce a Hamiltonian structure into the collisionless kinetic
equation of the self-consistent type. We consider the simplest example that has
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sufficient contents from the point of view of generalization: the Vlasov kinetic equa-
tion for the distribution function f describing potential (electric field E = −∇ϕ)
oscillations of electrons relative to a homogeneous background of ions with density
n0:

∂f

∂t
+ (v∇)f −∇ϕ

∂f

∂v
= 0, (11.1)

∆ϕ = −4π
[∫

fdv − n0

]
(e = m = 1).

Kinetic equations of this type also should be included with systems of hydrody-
namic type. In the phase space (r,v) Eq.(11.1) describes the motion of an incom-
pressible ”fluid”, whose density is convected together with the ”fluid”. The behavior
of the system here is in many ways similar to the situation which holds in a stratified
fluid. In order to transform to canonical coordinates, we introduce the Lagrange
coordinate ξ, which we determine from the condition that the distribution function
f be equal to the equilibrium distribution function f0(ξ), not necessarily Maxwellian:

f(r,v, t) = f0(ξ) or v = V(r, ξ, t).

Such a representation can be expressed in the integral form:

f(r,v, t) =
∫

F (r, ξ, t)δ(v −V(r, ξ, t))dξ. (11.2)

Substitution of (11.2) in (11.1) leads to the system of equations

∂F

∂t
+ div(FV) = 0, (11.3)

∂V

∂t
+ (V∇)V = −∇ϕ, (11.4)

∆ϕ = −4π[
∫

F (ξ, r, t)dξ − n0]. (11.5)

The internal energy of this system is a functional of the ”density” F :

Ein =
1

8π

∫
(∇ϕ)2 dr

=
1

2

∫ [
∫

F (ξ, r) dξ−n0] [
∫

F (ξ′, r′) dξ′ − n0]

|r− r′| drdr′

and therefore, according to the classification of Section 4 belongs to the type of (4.1),
(4.2).

Canonical variables for (11.3)-(11.5) are introduced in the standard way. For
potential “flows” V = ∇Φ the equations of motion have the form of the Hamiltonian
equations

∂Φ

∂t
= −δH

δF
,

∂F

∂t
=

δH

δΦ,
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where

H =
∫ Fv2

2
dξdr+Ein,

i.e., the Poisson bracket has the canonical form:

{S, T} =
∫

dξdr

[
δS

δF

δT

δΦ
− δT

δF

δS

δΦ

]
.

It can be expressed in terms of the distribution function f . By using (11.2), together
with simple transformations, one can get a bracket which was first obtained in [16]:

{S, T} =
∫

f

[(
∂

∂v

δS

δf

) (
∂

∂r

δT

δf

)
−

(
∂

∂r

δS

δf

) (
∂

∂v

δT

δf

)]
drdv.

Canonical variables are introduced analogously in the Vlasov-Maxwell equations,
where the canonical Poisson bracket allows for change to the bracket [16], locally
dependent on the distribution function and the electromagnetic field.

In concluding this section we mention similar another important example, in
which there is an analogous construction. This is the Benney equations, describing
surface waves in the approximation of ”shallow” water, where the flow of the fluid is
not assumed to be potential:

h1 + div
∫ h

0
Udz = 0, (11.6)

U1 + (U∇)U + W
∂U

∂z
+∇h = 0, (11.7)

∂W

∂z
+ divU = 0. (11.8)

Here h = h(r, t) (r = (x, y), 0 < z < h) is the boundary of the free surface of the
fluid, U = U(r, z) is the horizontal velocity vector, W = W (r, z) is the vertical
component of the velocity, and g = 1. We first show that the system (11.6)-(11.8)
can be reduced to an infinite system of two-dimensional hydrodynamic equations.

We introduce a coordinate ξ (0 < ξ < l) which enumerates each layer of the fluid
in equilibrium along the direction z. Then the coordinate of each layer at time t will
be given by the functions:

z = z(r, ξ, t), h(r, t) = z(r, l, t).

It is clear that the equations examined in terms of this function are similar to (9.4)
with

dz

dt
=

∂z

∂t
+ (U∇)z = W. (11.9)
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Setting ξ = l we see that (11.6) follows from (11.9). Derivatives taken for constant
ξ and z are linked by the formulas:

(
∂

∂t

)

z

=

(
∂

∂t

)

ξ

− zt

η

∂

∂ξ
, (∇)z = (∇)ξ − ∇z

η

∂

∂ξ
. (11.10)

In addition, we dispose of:
∂

∂z
=

1

η

∂

∂ξ
, (11.11)

where

η(r, ξ, t) =
∂z

∂ξ
.

Differentiating the relation (11.9) with respect to ξ and using formulas (11.10)-
(11.11), we easily obtain the equation

∂η

∂t
+ div(ηU) = 0. (11.12)

(Here and everywhere below the derivatives are taken at constant ξ).
Applying the same formulas to (11.7), we find, after transformations,

∂U

∂t
+ (U∇)U +∇h = 0 (11.13)

where h and η are connected by the relation

h =
∫ l

0
η(r, ξ, t)dξ. (11.14)

The system (11.12)-(11.14) is similar to that considered above and differs from it only
in the consistency condition (11.14). Therefore, the canonical variables for potential
(in the x, y plane) flows (U = ∇ϕ) remain the same [30]:

∂ϕ

∂t
= −δH

δη
,

∂η

∂t
=

δH

δϕ
, (11.15)

where

H =
1

2

∫
dξdr η(∇ϕ)2 +

1

2

∫
drh2.

If the flow depends only on x, the Hamiltonian structure can be given in terms
of the variables η and U :

∂η

∂t
= − ∂

∂x

δH

δU
,

∂U

∂t
= − ∂

∂x

δH

δη
.
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It should be added that for one-dimensional flows another method for introducing a
Hamiltonian structure was developed in paper [32]. One can show that the Hamil-
tonian structure introduced in [32] is equivalent to the structure (11.15).

At the end of this section we would like to pay attention to one more paper [79]
where, in fact, the same idea as for the Vlasov and Benney equations was used. In [79]
Virasoro supposes to describe flows of stratified fluid by use of mixed, Lagrangian-
Eulerian representation. For two-dimensional flows independent variables serve the
horizontal coordinate x and the Lagrangian coordinate, β, labeled the density levels.
In the case of two-dimensional hydrodynamics, when also the suggested scheme can
be applied, one of the coordinates (Lagrangian) labels the vorticity levels and another
coordinate may be, for example, Cartesian x. Virasoro, from the very beginning,
comes from the variational principle in the Lagrange form (7.6), and then performs
a transformation to new variables, by introducing the generating function of this
transformation. Just this function in the Lagrangian plays a role of the generated
coordinate.

Approximately the same ideas lie in the base of papers [38, 39] where for the
equation (5.11) describing the Rossby waves the Gardner-Zakharov-Faddeev brackets
is derived from noncanonical Poisson brackets.

12 Classical Perturbation Theory and Reduction

of Hamiltonians

If in the previous sections we dealt with introducing the Hamiltonian structure,
then further we will suppose that we was able by some way to introduce canonical
variables and together with them normal variables diagonalizing a quadratic part
of Hamiltonian. In this section we turn to the classical perturbation theory for
the wave Hamiltonian systems which is based on an assumption about smallness
of wave amplitudes. Difference of the wave systems from the finite-dimensional
ones consists in that application of the perturbation theory to the wave systems
leads to appearance of the resonant dominators not at separate points, as it is for
finite-dimensional equations, but on the whole manifolds. By their classification, we
arrive at the whole set of standard Hamiltonians and corresponding equations. In
particular, many well-known equations such that the nonlinear Schrodinger equation,
the KDV equation, the KP equation, etc. are among this set.

Suppose that in a medium there is one type of wave with dispersion law ω(k) and
amplitudes a(k), whose evolution is determined be Eq.(3.7):

∂ak

∂t
= −i

δH

δa∗k
(12.1)

where
H = H0 + H1 + ..., (12.2)
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H0 =
∫

ωk|ak|2dk,

H1 =
∫

(Vkk1k2a
∗
kak1ak2 + c.c.)δk−k1−k2dkdk1dk2

+
1

3

∫
(Ukk1k2a

∗
ka
∗
k2

a∗k2
+ c.c.)δk+k1+k2dkdk1dk2. (12.3)

Consider a transformation from the variables a(k) to new variables c(k) in the
form of integral power series,

ak = ck +
∫

Lkk1k2ck1ck2δk−k1−k2dk1dk2

+
∫

Mkk1k2ckc
∗
k2

δ(k2 − k − k1)dk1dk2

+
∫

Nkk1k2c
∗
kc
∗
k1

δk+k1+k2dk1)dk2 + .... (12.4)

We require such a transformation to eliminate the third order terms from the
Hamiltonian and that it must be canonical. The last item means that

{ck, c
∗
k′} = δk−k′ , {ck, ck′} = {c∗k, c∗k′} = 0.

From these two requirements, after simple algebra, we can find that

ak = ck −
∫ Vkk1k2ck1ck2

ωk − ωk1 − ωk2

δk−k1−k2dk1dk2

+2
∫ V ∗

k2kk1
ckc

∗
k2

ωk2 − ωk − ωk1

δk2−k−k1dk1dk2

−
∫ Ukkk2c

∗
kc
∗
k1

ωk + ωk1 + ωk2

δk+k1+k2dk1dk2 + ... (12.5)

Here the first two integral terms guarantee the cancelation in H (3.8) of the
second two terms, while the last term gives the cancelation of the other two ones,
proportional to a∗a∗a∗ and aaa. These two transformations (elimination of both
pairs from H) are independent and can be carried out separately. This procedure for
successive elimination of perturbation terms in the Hamiltonian expansion by means
of canonical transformations is called classical perturbation theory. In constructing
such a theory we quickly come up against the problem of ”small denominators”,
related in the present case to the appearance of nonintegrable singularities near the
manifolds

ωk + ... + ωki
− ωki+1

− ...− ωkn = 0,

k + ... + ki − ki+1 − ...− kn = 0,

which give the condition for an nth order resonance. The simplest manifolds already
appear in the elimination of the three-wave Hamiltonian (3.8), when (cf. (12.5)):
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ωk + ωk1 + ωk2 = 0,

k + k1 + k2 = 0 (12.6)

and

ωk − ωk1 − ωk2 = 0,

k− k1 − k2 = 0. (12.7)

Satisfying the first condition is possible if waves with negative energy exist in the
medium, and then one of the frequencies ωk must be negative. Such a situation, as a
rule, occurs in unstable media, for example, in a plasma with a current. If there are
no waves with negative energy in the medium, then the terms proportional to a∗a∗a∗

and aaa can be eliminated from H1 by a canonical transformation, and in this sense
they are unimportant (non-resonant).

The possible existence of solutions of the system (12.7) depends on the form of
the functions ω(k). For isotropic media, in which ω(k) depends only on | k |, there
is no solution if ω(0) = 0 and ω′′(k) < 0. Such a situation is realized, for example,
for surface gravitational waves. For capillary waves the resonance conditions (12.7)
are satisfied.

If the conditions (12.6), (12.7) have no solutions then the three-wave terms are
eliminated. Among the fourth order terms the important one is the Hamiltonian in
the form

H3 =
∫

Tk1k2k3k4a
∗
k1

a∗k2
ak3ak4δk1+k2−k3−k4Πdki, (12.8)

for which the resonance condition

ωk1 + ωk2 − ωk3 − ωk4 = 0,

k1 + k2 − k3 − k4 = 0

has solutions independent of the form of ω(k). Here the three-wave interaction leads
to a re-normalization of the vertex Tkk1k2k3 in (12.8) (see, [85]):

Tkk1k2k3 = T
(0)
kk1k2k3

− 2
U−k2−k3,k2k3U

∗
−k−k1,kk1

ωk+k1 + ωk + ωk1

+2
Vk2+k3k2k3V

∗
k+k1kk1

ωk+k1 − ωk − ωk1

− 2
Vkk2k−k2V

∗
k3k1k3−k1

ωk3−k1 + ωk1 − ωk3

−2
Vk1k3k1−k3V

∗
k2kk2−k

ωk2−k + ωk − ωk2

− 2
Vk1k2k1−k2V

∗
k3−kk3−k

ωk3−k + ωk − ωk3

−2
Vkk3k−k3V

∗
k2k1k2−k1

ωk2−k + ωk1 − ωk2

. (12.9)
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Thus, we arrive at a sequence of standard interaction Hamiltonians:

Hd =
∫

(Vkk1k2a
∗
kak1ak2 + c.c.)δk−k1−k2dkdk1dk2 (12.10)

responsible for the process of decay 1 → 2 and the inverse process of fusion 2 → 1;
the Hamiltonian

Hex =
1

3

∫
(U∗

kk1k2
a∗ka

∗
k1

a∗k2
+ c.c.)δk+k1+k2dkdk1dk2, (12.11)

describing the so-called explosive instability, in which three quanta of the wave field
are created simultaneously from the vacuum (0 → 3), the Hamiltonian

Hsc =
∫

Tkk1k2k3a
∗
ka
∗
k1

ak2ak3δk+k1−k2−k3Πdki (12.12)

responsible for the process 2 → 2, etc.
If several types of waves exist in the medium, the list of standard Hamiltonians

is greatly increased. We give one of them, responsible for the interaction of high-
frequency and low-frequency waves,

Hint =
∫

(Vkk1k2bka
∗
k1

ak2 + c.c.)δk−k1−k2dkdk1dk2. (12.13)

A Hamiltonian of type (12.13) describes the interaction of light and sound in
dielectrics, Langmuir and ion-acoustic waves in plasma, etc.

In describing a system of nonlinear waves by means of some standard interaction
Hamiltonian, we are naturally assuming that the level of nonlinearity, characterized
by the wave amplitude, is small. Despite these limitations, the resulting phenomena
are quite rich. Many of them can already be understood starting from the simplest
models that arise from the reduction of the standard Hamiltonians.

As a first example let us consider the interaction of three spectrally narrow wave
packets with wave vectors lying near k1,k2 and k3. Such an interaction is resonant
if, for instance,

ω(k1) = ω(k2) + ω(k3)

k1 = k2 + k3.

For this case a(k) is representative in the form

a(k) = a1(k) + a2(k) + a3(k),

where a1, a2, a3 are the wave amplitudes of the packets concentrated near points
k = ki(i = 1, 2, 3), the characteristic width κi of the each packet is assumed to be
small compared with | ki |. For such an interaction, a canonical transformation
reduces Hd (12.10) to the form:

Hint = 2
∫

[V a∗1(k1)a2(k2)a3(k3) + c.c.]δk1−k2−k3Πdki.
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Now using the narrowness of these packets, we set

ω(k1 + κ) = ω(ki) + κvi, vi = ∂ω/∂ki

in H0 and make the change of variables:

ci(κ) = ai(k)eiω(ki)t (κ = k− ki).

As a result,

H → H −∑ ∫
ωi|ci|2dκ.

Taking the inverse Fourier transform of this Hamiltonian, using the formula

ψi(x) =
1

(2π)3/2

∫
ci(κ)eiκrdκ

we obtain the well-known equations for resonant interaction [80]:

∂ψ1

∂t
+ (v1∇)ψ1 = − iV

(2π)3/2
ψ2ψ3, (12.14)

∂ψ2

∂t
+ (v2∇)ψ2 = − iV ∗

(2π)3/2
ψ1ψ

∗
3 (12.15)

∂ψ3

∂t
+ (v3∇)ψ3 = − iV ∗

(2π)3/2
ψ2ψ

∗
3. (12.16)

In similar fashion one gets the system of equations for describing the explosive
instability of three wave packets. In this case the interaction Hamiltonian for the
packets arises as the result of reduction of the Hamiltonian (12.11):

∂ψ1

∂t
+ (v1∇)ψ1 = − iU∗

(2π)3/2
ψ∗2ψ

∗
3, (12.17)

∂ψ2

∂t
+ (v2∇)ψ2 = − iU∗

(2π)3/2
ψ∗1ψ

∗
3, (12.18)

∂ψ3

∂t
+ (v3∇)ψ3 = − iU∗

(2π)3/2
ψ∗2ψ

∗
3. (12.19)

The following example refers to the reduction of the Hamiltonian (12.12) for a single
spectrally narrow wave packet. Suppose that the center of the packet is at k0 then
setting

a(k) = c(κ)exp(−iωk0t), k = k0 + κ

H → H − ω(k0)
∫
|c(κ)|2dκ,
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ω(k) = ω(k0 + κ) = ω(k0) + κvg +
1

2

∂2ω

∂kα∂kβ

κακβ

we get for the envelope ψ(r) the nonlinear Schrödinger equation (NLSE):

i(ψt + vg∇ψ) +
ωαβ

2

∂2ψ

∂xα∂xβ

+
T

(2π)3
|ψ|2ψ = 0 (12.20)

where

ωαβ =
∂2ω

∂kα∂kβ

.

Equation (12.20) describes the self-interaction of a spectrally narrow wave packet in
a nonlinear medium. In an isotropic medium, when the tensor

ωαβ =
vg

2k0

(δαβ − nαnβ) + ω′′nαnβ (n =
k

k
)

this equation simplifies to the form

i(ψt + vgψx) +
vg

2k0

∆⊥ψ +
ω
′′

2
ψxx +

T

(2π)3
|ψ|2ψ = 0, (12.21)

where the x axis coincides with the direction of the group velocity. In this equation
the second term is responsible for the propagation of the wave packet as a whole
with the group velocity vg (this term can be evidently excluded by passing to the
system of reference moving with vg); the next term describes the diffraction of the
packet in the plane transverse to vg , the fourth term corresponds to the dispersion
of the broadening along the x-direction, finally, the last term in (12.21) accounts for
the nonlinearity.

After performing in this equation rescaling transformations, the NLSE (12.21)
can be written in the following canonical form,

iψt + ∆⊥ψ + σψxx + η|ψ|2ψ = 0, (12.22)

where σ = sign(ω′′vg) and η = sign(Tvg). This equation can be considered as
the Shrödinger equation for a quantum particle motion in self-consistent potential
U = −η|ψ|2 with a positive transverse mass and a longitudinal mass sing of which
coincides with σ. This means that the character of interaction in transverse and lon-
gitudinal directions are different in dependence of signs of η and σ. If η > 0, then in
transverse direction the attraction takes place and the packet has to be compressed
due the nonlinear interaction. In the opposite case, (η < 0), the nonlinearity helps
to the diffraction broadening. The same situation is with the longitudinal motion.
If ση = 1, then the compression takes place along the group velocity direction and
respectively the repulsion in the opposite case (ση = −1). There exists the only
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variant σ = η = 1, when simultaneously the nonlinearity leads to the packet com-
pression in all directions. Just in this case the wave collapse is possible (for review
see [86]).

Thus, depending on σ and η, there exist four canonical forms for the NLSE:

iψt + ∆ψ + |ψ|2ψ = 0; (12.23)

iψt + ∆⊥ψ − ψxx + |ψ|2ψ = 0; (12.24)

iψt + ∆ψ − |ψ|2ψ = 0; (12.25)

iψt + ∆⊥ψ − ψxx − |ψ|2ψ = 0. (12.26)

All these equations belong to the Hamiltonian type, they can be written as

iψt =
δH

δψ∗
, H =

∫ {
|∇⊥ψ|2 + σ|ψx|2 − η

2
|ψ|4

}
dr. (12.27)

In deriving Eq. (12.20) we have assumed that the kernel Tk1k2k3k4 is a continuous
function of its arguments, that the vertex T appearing in (12.9) is the value of this
kernel at ki = k0. However, this situation is not typical, in particular if ω(0) = 0. At
the same time, according to Goldstone’s theorem (cf. [81]) the matrix element Vkk1k2

vanishes if one of the wave vectors k,k1 or k2 is zero. Thus, in expression (12.9) for
the matrix element of T , there are indeterminacies when ki = k0. To remove them
we must calculate a limit of the type

lim
|Vk0,k0+k,−k|2
ω(k)− kvg

.

For example, for surface waves of infinite depth

Vkk0k0 ∼ k3/4, ω(k) ∼ k1/2

and all the indeterminacies vanish. For finite depth one has Vkk0k0 ∼ k1/2, ω(k) ∼ k,
so that this limit is finite in each direction, while the quantity Tk0k0k0k0 remains
undetermined. Indeterminacy of this type is related to the excitation of forced motion
of the medium as a whole. Such a situation occurs for all waves whose dispersion
laws ωk become linear as k → 0. In addition to the surface waves considered above,
such waves include ion-acoustic waves in plasma, sound waves in a solid, etc.

In this situation one needs separate equations for describing induced low-frequency
motions. This problem is a special case of a more general question: the interaction
of a spectrally narrow high-frequency wave packet with a low-frequency oscillation
of acoustic type. The Hamiltonian for such an interaction can be constructed from
general principles, based on the classical notion of an adiabatic invariant. (Of course,
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there is also a direct method of calculation, based on the reduction of the Hamilto-
nian (12.13)). We recall that for an oscillator of frequency ω there is the following
remarkable relation between the energy E and the adiabatic invariant I:

E

ω
= I.

In the present case the adiabatic invariant is the quantity | c(k) |2, so that

H0 ≈ ω(k0)
∫
|c(k)|2dk =

∫
ω(k0)|ψ|2dr.

A nonlinear interaction with low-frequency motions does not destroy the adiabaticity,
so

Hint =
∫

δω|ψ|2dr,
where δω is the change in frequency of variations of the local characteristics of the
medium, namely, the density δρ and velocity v:

δω =
∂ω

∂ρ0

δρ + k0v

(the second term corresponding to the Doppler effect).
Setting v = ∇ϕ and remembering that δρ and ϕ are canonically conjugate func-

tions for a compressible fluid, we get the equations [67, 82]:

i(ψt + vg∇ψ) +
ωαβ

2

∂2ψ

∂xα∂xβ

+

(
∂ω

∂ρi

δρ + k0∇ϕ

)
ψ +

T

(2π)3
|ψ|2ψ = 0, (12.28)

∂

∂t
δρ + ρ0∆ϕ + (k0∇)|ψ|2 = 0, (12.29)

ρ0
∂ϕ

∂t
+ c2

sδρ +
∂ω

∂ρ0

|ψ|2 = 0, (12.30)

where T is the regular part of the matrix element T̃k0k0k0k0 , having no singularities.
The Hamiltonian of this system is a combination of the Hamiltonians for Eqs.

(12.20) and (4.3):

Hc =
∫

[−iψ∗vg∇ψ +
1

2
ωαβ

∂ψ

∂xα

∂ψ∗

∂xβ

+

(
∂ω

∂ρ0

δρ + k0∇ϕ

)
|ψ|2

+
1

2

T

(2π)3
|ψ|4 + c2

s

δρ2

2ρ0

+ ρ0
(∇ϕ)2

2
]dr. (12.31)

Depending on the ratio between the group velocity vg and the sound velocity cs,
Eqs. (12.29), (12.30) permit various simplifications. If vg < cs and εg∆k À T | ψ |2,

64



where ∆k is the width around k of the high-frequency packet, we can replace ∂/∂t
by vg∇ in Eqs. (12.29), (12.30):

−vg∇δρ + ρ0∆ϕ + (k0∇)|ψ|2 = 0,

−ρ0(vg∇)ϕ + c2
sδρ +

∂ω

∂ρ0

|ψ|2 = 0. (12.32)

For isotropic media the resulting system of equations described in a coordinate
system moving with the group velocity, goes over into the Davey-Stewartson equa-
tions

iψt +
υg

2k0

∆⊥ψ +
ω′′

2
ψxx +

[
∂ω

∂ρ0

+
k0c

2
s

ρ0υg

]
δρψ

+

[
T/(2π)3 +

k0

ρ0υg

∂ω

∂ρ0

]
|ψ|2ψ = 0, (12.33)

(
υg

∂

∂x

)2 (
δρ− k0

υg

|ψ|2
)

= ∆

(
c2
sδρ +

∂ω

∂ρ0

|ψ|2
)

, (12.34)

which were first obtained for gravitational waves on the surface of a fluid of finite
depth [83].

In this system Eq. (12.32) or (12.34) represents a constraint among δρ, ϕ and
|ψ|2, and the Hamiltonian for (12.33) is constructed taking these constraints into
account. An explicit expression for it is easily obtained if we represent the constraint
equations in the form

−(vg∇)δρ =
δH

δϕ
, −(vg∇)ϕ =

δH

δρ

with H = Hc (12.31). Then the Hamiltonian for the Davey-Stewartson equation
HDS is gotten from Hc by the following rule:

HDS = Hc −
∫

δρ(vg∇)ϕdr + i
∫

ψ∗(vg∇)ψdr,

and the equations have the form

iψt =
δHDS

δψ∗
.

If vg > cs, then in Eqs. (12.29), (12.30), we cannot replace ∂/∂t by the operator
-vg∇ whatever the level of nonlinearity may be. This is easily understood if we
rewrite Eqs. (12.29), (12.30) in Fourier representation. If we carry this out, we are
confronted by a resonance denominator of the form
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kcs = (kvg),

which corresponds to the condition (12.7) for the decay of a high-frequency wave
into high-frequency and sound waves. Under the condition vg À cs, corresponding,
for example, to the interaction of light and sound in dielectrics, the contribution to
δω because of the Doppler effect is weak compared to the scattering by long-wave
fluctuations of the density δρ of order cs/vg. In this case Eqs. (12.28)-(12.30) simplify
to the form:

iψt +
ω′′

2
ψxx +

υg

2k0

∆⊥ψ +

(
∂ω

∂ρ
δρ +

T

(2π)3
|ψ|2

)
ψ = 0,




(
∂

∂t
− υg

∂

∂x

)2

− c2
s∆⊥


 δρ =

∂ω

∂ρ0

∆|ψ|2.

Among the simplest reductions one should also include the reduction of the
Boussinesq equation to the KdV equation. For the Boussinesq model the dispersion
law is close to linear. This means that in the Hamiltonian H1 with coefficients of the
form (4.5), one should keep the terms proportional to a∗aa and aa∗a∗, and eliminate
the other terms by canonical transformations, while in the quadratic Hamiltonian,
we can keep in ω(k) the term linear in the dispersion ν: ω(k) = kcs(1+(νρ0k

2/2c2
s));

then changing from the variables ak to u(x) according to the formulas:

ak =
uk√
k
, u =

∫ ∞

0
(uke

ikx + u∗ke
−ikx)dk

we then arrive at the KdV equation:

ut + csux + βuux + csγuxxx = 0, (12.35)

where

γ = −νρ0

2c2
s

, β =
1

2

(
cs

ρ0

)1/2

(1 + g).

The natural generalization of the KDV equation to many dimensions is the Kadomtsev-
Petviashvili (KP) equation [87] which follows if one considers the reduction of the
Hamiltonian (4.5) to the case of the narrow angular distribution of the acoustic waves
with a weak dispersion. Letting that the packet mainly propagates along the x-axis
the equation (12.35) will transform into the form,

∂

∂x
(ut + csux + βuux + csγuxxx) =

cs

2
∇2
⊥u, (12.36)

where the term in the left-hand side of the equation describes the diffraction of
acoustic waves in the transverse direction to x. It is necessary to emphasize that
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all terms in this equation are small compared with respect to the second one, csux,
responsible for the propagation along the x-axis of the packet with the sound velocity.
And just in this sense the procedure of the derivation of the KP equation as well as
the KDV equation represents one of the variants of the averaging methods when it
is possible to distinguish two different temporal types of motion, rapid and slow.

The examples do not obviously exhaust all the possible reductions of Hamilto-
nians. We have only concentrated on the most bright ones, demonstrating their
universality. A significant feature of this universality is that many of the models
considered in this survey permit the application of the inverse scattering transform.
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